Skip to main content
Log in

Site-specific covalent attachment of heme proteins on self-assembled monolayers

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Naturally occurring hemin cofactor has been functionalized to introduce two terminal alkyne groups. This modified hemin has been successfully covalently attached to mixed self-assembled monolayers of alkanethiols and azide-terminated alkanethiols on gold electrodes using a CuI-catalyzed 1,3-cycloaddition reaction. However these hemin-modified electrodes could not be used to reconstitute apomyoglobin on gold electrodes owing to the hydrophobicity of the alkane thiol self-assembled monolayer. Modification of existing techniques allowed covalent attachment of alkyne-terminated electroactive species onto mixed monolayers of azidothiols and carboxylatoalkanethiols on electrodes using the same CuI-catalyzed 1,3-cycloaddition reaction. Apomyoglobin could be reconstituted using the hemin covalently attached to these hydrophilic electrodes. The electrochemical data, UV–vis absorption data, surface-enhanced resonance Raman spectroscopy data, and atomic force microscopy data indicate the presence of these modified myoglobin proteins on these electrodes. The direct attachment of the heme cofactor of these modified myoglobin proteins to the electrode allows fast electron transfer to the heme center from the electrode and affords efficient O2-reducing bioelectrodes under physiological conditions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Scheme 3
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. We were unable to obtain good-quality SERRS data on the reduced form in the absence of imidazole. We think this is due to high O2 binding affinity of Mb, which reacts with any O2 that is left behind in the buffer after repeated freeze–pump–thaw cycles.

References

  1. Shikama K (1998) Chem Rev 98:1357–1373

    Article  PubMed  CAS  Google Scholar 

  2. Mozzarelli A, Rivetti C, Rossi GL, Henry ER, Eaton WA (1991) Nature 351:416–419

    Article  PubMed  CAS  Google Scholar 

  3. Collman JP, Boulatov R, Sunderland CJ, Fu L (2004) Chem Rev 104:561–588

    Article  PubMed  CAS  Google Scholar 

  4. Jones RD, Summerville DA, Basolo F (1979) Chem Rev 79:139–179

    Article  CAS  Google Scholar 

  5. Williams RJP (1956) Chem Rev 56:299–328

    Article  CAS  Google Scholar 

  6. Kaila VRI, Verkhovsky MI, Wikstrom M (2010) Chem Rev 110:7062–7081

    Article  PubMed  CAS  Google Scholar 

  7. Ferguson-Miller S, Babcock GT (1996) Chem Rev 96:2889–2908

    Article  PubMed  CAS  Google Scholar 

  8. Bertini I, Cavallaro G, Rosato A (2006) Chem Rev 106:90–115

    Article  PubMed  CAS  Google Scholar 

  9. Rouzer CA, Marnett LJ (2003) Chem Rev 103:2239–2304

    Article  PubMed  CAS  Google Scholar 

  10. Weissbuch I, Leiserowitz L (2008) Chem Rev 108:4899–4914

    Article  PubMed  CAS  Google Scholar 

  11. Trijbels JMF, Sengers RCA, Ruitenbeek W, Fischer JC, Bakkeren JAJM, Janssen AJM (1988) Eur J Pediatr 148:92–97

    Article  PubMed  CAS  Google Scholar 

  12. Liu G, Gooding JJ (2006) Langmuir 22:7421–7430

    Article  PubMed  CAS  Google Scholar 

  13. Zhang HM, Li NQ (2000) Bioelectrochemistry 53:97–101

    Article  Google Scholar 

  14. Dronov R, Kurth DG, Möhwald H, Spricigo R, Leimkühler S, Wollenberger U, Rajagopalan KV, Scheller FW, Lisdat F (2008) J Am Chem Soc 130:1122–1123

    Article  PubMed  CAS  Google Scholar 

  15. Bonk SM, Lisdat F (2009) Biosens Bioelectron 25:739–744

    Article  PubMed  CAS  Google Scholar 

  16. Kumar SA, Chen SM (2007) Biosens Bioelectron 22:3042–3050

    Article  PubMed  CAS  Google Scholar 

  17. Cracknell JA, Vincent KA, Armstrong FA (2008) Chem Rev 108:2439–2461

    Article  PubMed  CAS  Google Scholar 

  18. Feng JJ, Zhao G, Xu JJ, Chen HY (2005) Anal Biochem 342:80–286

    Article  Google Scholar 

  19. Chung YH, Lee T, Min J, Choi JW (2010) Mol Cryst Liq Cryst 519:19–26

    Article  CAS  Google Scholar 

  20. Murgida DH, Hildebrandt P, Wei J, He YF, Haiying L, Waldeck DH (2004) J Phys Chem B 108:2261–2269

    Article  CAS  Google Scholar 

  21. Wei JJ, Liu HY, Khoshtariya DE, Yamamoto H, Dick A, Waldeck DH (2002) Angew Chem Int Ed 41:4700–4703

    Article  CAS  Google Scholar 

  22. Vojtechovsky J, Chu K, Berendzen J, Sweet RM, Schlichting I (1999) Biophys J 77:2153–2174

    Article  PubMed  CAS  Google Scholar 

  23. Carlsson GH, Nicholls P, Svistunenko D, Berglund GI, Hajdu J (2005) Biochemistry 44:635

    Article  PubMed  CAS  Google Scholar 

  24. Matsui T, Iwasaki M, Sugiyama R, Unno M, Ikeda-Saito M (2010) Inorg Chem 49:3602–3609

    Article  PubMed  CAS  Google Scholar 

  25. Wang L, Cowley AB, Terzyan S, Zhang X, Benson DR (2007) Proteins 67:293–304

    Article  PubMed  CAS  Google Scholar 

  26. Hayashi T, Hisaeda Y (2002) Acc Chem Res 35:35–43

    Article  PubMed  CAS  Google Scholar 

  27. Kolb HC, Finn MG, Sharpless KB (2001) Angew Chem Int Ed 40:2004–2021

    Article  CAS  Google Scholar 

  28. Hong V, Presolski SI, Ma C, Finn MG (2009) Angew Chem Int Ed 48:9879–9883

    Article  CAS  Google Scholar 

  29. Moses JE, Moorhouse AD (2007) Chem Soc Rev 36:1249–1262

    Article  PubMed  CAS  Google Scholar 

  30. Lu C, Zhao X, Lu Y, Rousseau DL, Yeh SR (2010) J Am Chem Soc 132:1598–1605

    Article  PubMed  CAS  Google Scholar 

  31. Yeung N, Lin YW, Gao YG, Zhao X, Russell BS, Lei L, Miner KD, Robinson H, Lu Y (2009) Nature 462:1079–1084

    Article  PubMed  CAS  Google Scholar 

  32. Lin YW, Yeung N, Gao YG, Miner KD, Tian S, Robinson H, Lu Y (2010) Proc Natl Acad Sci USA 107:8581–8586

    Article  PubMed  CAS  Google Scholar 

  33. Collman JP, Devaraj NK, Chidsey CED (2004) Langmuir 20:1051–1053

    Article  PubMed  CAS  Google Scholar 

  34. Zhang Y, Wilson GS (1993) J Electroanal Chem 345:253–271

    Article  CAS  Google Scholar 

  35. Teale FWJ (1959) Biochim Biophys Acta 35:543

    Article  PubMed  CAS  Google Scholar 

  36. Yonetani T, Asakura T (1969) J Biol Chem 244:4580–4588

    PubMed  CAS  Google Scholar 

  37. Bulovas A, Talaikytė Z, Niaura G, Kažemėkaitė M, Marcinkevičienė L, Bachmatova I, Meškys R, Razumas V (2007) Chemija 18:9–15

    CAS  Google Scholar 

  38. David DG, Orleron DJ (1966) Anal Chem 38:179–183

    Article  Google Scholar 

  39. Yan L, Marzolin C, Terfort A, Whitesides GM (1997) Langmuir 13:6704–6712

    Article  CAS  Google Scholar 

  40. Arnold R, Azzam W, Terfort A, Wöll C (2002) Langmuir 18:3980–3992

    Article  CAS  Google Scholar 

  41. Winter N, Vieceli J, Benjamin I (2008) J Phys Chem B 112:227–231

    Article  PubMed  CAS  Google Scholar 

  42. Guo LH, McLendon G, Razafitrimo H, Gao Y (1996) J Mater Chem 6:369–374

    Article  CAS  Google Scholar 

  43. Weidinger IM, Murgida DH, Dong WF, Mohwald H, Hildebrandt P (2006) J Phys Chem B 110:522–529

    Article  PubMed  CAS  Google Scholar 

  44. Wegerich F, Turano P, Allegrozzi M, Mohwald H, Lisdat F (2009) Anal Chem 81:2976–2984

    Article  PubMed  CAS  Google Scholar 

  45. Bowen WJ (1949) J Biol Chem 179:235–245

    PubMed  CAS  Google Scholar 

  46. Hu S, Smith KM, Spiro TG (1996) J Am Chem Soc 118:12638

    Article  CAS  Google Scholar 

  47. Kent MS, Yim H, Sasaki DY (2004) Langmuir 20(7):2819–2829

    Article  PubMed  CAS  Google Scholar 

  48. Bard AJ, Faulkner LR (1980) Electrochemical methods. Wiley, New York, p 300

    Google Scholar 

  49. Springer BA, Egeberg KD, Sligar SG (1989) J Biol Chem 264:3057–3060

    PubMed  CAS  Google Scholar 

  50. Carver TE Jr, Brantley RE, Singleton EW, Arduini RM, Quillin ML, Phillips GN, Olson JS (1992) J Biol Chem 267:14443–14450

    PubMed  CAS  Google Scholar 

  51. Brantley RE Jr, Smerdon SJ, Wilkinson AJ, Singleton EW, Olson JS (1993) J Biol Chem 268:6995–7010

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research was sponsored by DST grant SR/S1/IC-35/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Dey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 259 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee, S., Sengupta, K., Das, M.R. et al. Site-specific covalent attachment of heme proteins on self-assembled monolayers. J Biol Inorg Chem 17, 1009–1023 (2012). https://doi.org/10.1007/s00775-012-0915-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-012-0915-y

Keywords

Navigation