Skip to main content
Log in

Tyrosine phosphorylation turns alkaline transition into a biologically relevant process and makes human cytochrome c behave as an anti-apoptotic switch

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Cytochrome c (Cc) is a key protein in cell life (respiration) and cell death (apoptosis). On the one hand, it serves as a mitochondrial redox carrier, transferring electrons between the membrane-embedded complexes III and IV. On the other hand, it acts as a cytoplasmic apoptosis-triggering agent, forming the apoptosome with apoptosis protease-activating factor-1 (Apaf-1) and activating the caspase cascade. The two functions of cytochrome c are finely tuned by the phosphorylation of tyrosines and, in particular, those located at positions 48 and 97. However, the specific cytochrome c-phosphorylating kinase is still unknown. To study the structural and functional changes induced by tyrosine phosphorylation in cytochrome c, we studied the two phosphomimetic mutants Y48E and Y97E, in which each tyrosine residue is replaced by glutamate. Such substitutions alter both the physicochemical features and the function of each mutant compared with the native protein. Y97E is significantly less stable than the WT species, whereas Y48E not only exhibits lower values for the alkaline transition pK a and the midpoint redox potential, but it also impairs Apaf-1-mediated caspase activation. Altogether, these findings suggest that the specific phosphorylation of Tyr48 makes cytochrome c act as an anti-apoptotic switch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Ac-LEHD-AFC:

N-acetyl-Leu-Glu-His-Asp-(7-amino-4-trifluoromethyl coumarin)

Apaf-1:

Apoptosis protease-activating factor-1

BSA:

Bovine serum albumin

CL:

Cardiolipin

Cc :

Cytochrome c

CcO:

Cytochrome c oxidase

CD:

Circular dichroism

DCF:

2′,7′-Dichlorofluorescein

EPR:

Electron paramagnetic resonance

H2DCF:

Reduced 2′,7′-dichlorofluorescein

MD:

Molecular dynamics

NMR:

Nuclear magnetic resonance

PC9:

Pro-caspase 9

RMSD:

Root mean square deviation

RNOS:

Reactive nitrogen/oxygen species

ROS:

Reactive oxygen species

T m :

Midpoint melting temperature

References

  1. Ubersax JA, Ferrell JE (2007) Nat Rev Mol Cell Biol 8:530–541

    Article  PubMed  CAS  Google Scholar 

  2. Paradela A, Albar JP (2008) J Proteome Res 7:1809–1818

    Article  PubMed  CAS  Google Scholar 

  3. Tarrant MK, Cole PA (2009) Annu Rev Biochem 78:797–825

    Article  PubMed  CAS  Google Scholar 

  4. Pokutta S, Weis WI (2007) Annu Rev Cell Dev Biol 23:237–261

    Article  PubMed  CAS  Google Scholar 

  5. Díaz-Moreno I, Hollingworth D, Frenkiel TA, Kelly G, Martin S, Howell S, García Mayoral MF, Gherzi R, Briata P, Ramos A (2009) Nat Struct Mol Biol 16:238–246

    Article  PubMed  Google Scholar 

  6. Fischer EH, Graves DJ, Crittenden RRC, Krebs EG (1959) J Biol Chem 234:1698–1704

    PubMed  CAS  Google Scholar 

  7. Blom N, Gammeltoft S, Brunak S (1999) J Mol Biol 294:1351–1362

    Article  PubMed  CAS  Google Scholar 

  8. Lee I, Salomon AR, Yu K, Doan JW, Grossman LI, Hüttemann M (2006) Biochemistry 45:9121–9128

    Article  PubMed  CAS  Google Scholar 

  9. Yu H, Lee I, Salomon AR, Yu K, Hüttemann M (2008) Biochim Biophys Acta 1777:1066–1071

    Article  PubMed  CAS  Google Scholar 

  10. MacMunn C (1886) Philos Trans R Soc London 177:267–298

    Article  Google Scholar 

  11. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Cell 86:147–157

    Article  PubMed  CAS  Google Scholar 

  12. Cai J, Yang J, Jones DP (1998) Biochim Biophys Acta 1366:139–149

    Article  PubMed  CAS  Google Scholar 

  13. Yu X, Acehan D, Ménétret J-F, Booth CR, Ludtke SJ, Riedl SJ, Shi Y, Wang X, Akey CW (2005) Structure 13:1725–1735

    Article  PubMed  CAS  Google Scholar 

  14. Ow Y-LP, Green DR, Hao Z, Mak TW (2008) Nat Rev Mol Cell Biol 9:532–542

    Article  PubMed  CAS  Google Scholar 

  15. Pecina P, Borisenko GG, Belikova NA, Tyurina Y, Pecinova A, Lee I, Samhan-Arias AK, Przyklenk K, Kagan VE, Huttemann M (2010) Biochemistry 49:6705–6714

    Article  PubMed  CAS  Google Scholar 

  16. Rodríguez-Roldán V, García-Heredia JM, Navarro JA, De la Rosa MA, Hervás M (2008) Biochemistry 47:12371–12379

    Article  PubMed  Google Scholar 

  17. García-Heredia JM, Díaz-Moreno I, Nieto PM, Orzáez M, Kocanis S, Teixeira M, Pérez-Payá E, Díaz-Quintana A, De la Rosa MA (2010) Biochim Biophys Acta 1797:981–993

    Article  PubMed  Google Scholar 

  18. Ischiropoulos H (2003) Biophys Res Comm 305:776–783

    Article  CAS  Google Scholar 

  19. Leon L, Jeannin J-F, Bettaieb A (2008) Nitric Oxide 19:77–83

    Article  PubMed  CAS  Google Scholar 

  20. Abello N, Kerstjens HAM, Postma DS, Bischoff R (2009) J Proteome Res 8:3222–3238

    Article  PubMed  CAS  Google Scholar 

  21. Messías AC, Harnisch C, Ostareck-Lederer A, Sattler M, Ostareck DH (2006) J Mol Biol 361:470–481

    Article  PubMed  Google Scholar 

  22. Rodríguez-Roldán V, García-Heredia JM, Navarro JA, Hervás M, De la Cerda B, Molina-Heredia FP, De la Rosa MA (2006) Biochem Biophys Res Comm 346:1108–1133

    Article  PubMed  Google Scholar 

  23. Ortega JM, Hervás M, Losada M (1988) Eur J Biochem 171:449–455

    Article  PubMed  CAS  Google Scholar 

  24. Martin SR, Biekofsky RR, Skinner MA, Guerrini R, Salvadori S, Feeney J, Bayley PM (2004) FEBS Lett 577:284–288

    Article  PubMed  CAS  Google Scholar 

  25. Ranjbar B, Gill P (2009) Chem Biol Drug Des 74:101–120

    Article  PubMed  CAS  Google Scholar 

  26. Wilson MT, Greenwood C (1971) Eur J Biochem 22:11–18

    Article  PubMed  CAS  Google Scholar 

  27. Abriata LA, Cassina A, Tórtora V, Marin M, Souza JM, Castro L, Vila AJ, Radi R (2009) J Biol Chem 284:17–26

    Article  PubMed  CAS  Google Scholar 

  28. Case DA, Darden TA, Cheatham III, TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paseani F, Wu X, Bronzell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9. University of California, San Francisco

  29. Kollman PA, Dixon R, Cornell W, Fox T, Chipot C, Pohorille A (1997) In: Wilkinson A, Weiner P, Van Gunsteren WF (eds) Computer simulation of biomolecular systems. Elsevier, Amsterdam, pp 83–96

  30. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38

    Article  PubMed  CAS  Google Scholar 

  31. Nicholls A, Honig B (1991) J Comput Chem 12:435–445

    Article  CAS  Google Scholar 

  32. Malet G, Martin AG, Orzáez M, Vincent MJ, Masip I, Sanclimens G, Ferrer-Montiel A, Mingarro I, Messeguer A, Fearnhead HO, Pérez-Payá E (2006) Cell Death Differ 13:1523–1532

    Article  PubMed  CAS  Google Scholar 

  33. Chou PY, Fasman GD (1974) Biochemistry 13:211–272

    Article  PubMed  CAS  Google Scholar 

  34. Blauer G, Sreerama N, Woody RW (1993) Biochemistry 32:6674–6679

    Article  PubMed  CAS  Google Scholar 

  35. Santucci R, Ascoli F (1997) J Inorg Biochem 68:211–214

    Article  PubMed  CAS  Google Scholar 

  36. Schweitzer-Stenner R (2008) J Phys Chem B 112:10358–10366

    Article  PubMed  CAS  Google Scholar 

  37. Hong XL, Dixon DW (1989) FEBS Lett 246:105–108

    Article  PubMed  CAS  Google Scholar 

  38. Assfalg M, Bertini I, Dolfi A, Turano P, Mauk AG, Rosell FI, Gray HB (2003) J Am Chem Soc 125:2913–2922

    Article  PubMed  CAS  Google Scholar 

  39. Chen L, Pereira MM, Teixeira M, Xavier AV, Le Gall J (1994) FEBS Lett 347:295–299

    Article  PubMed  CAS  Google Scholar 

  40. Pereira IAC, LeGall J, Xavier AV, Teixeira M (1997) J Biol Inorg Chem 2:23–31

    Article  CAS  Google Scholar 

  41. Taylor CPS (1977) Biochim Biophys Acta 491:137–149

    PubMed  CAS  Google Scholar 

  42. Fisher WR, Taniuchi H, Anfinsen C (1973) J Biol Chem 248:3188–3195

    PubMed  CAS  Google Scholar 

  43. Lee JC, Engman KC, Tezcan FA, Gray HB, Winkler JR (2002) Proc Natl Acac Sci USA 99:14778–14782

    Article  CAS  Google Scholar 

  44. Mano CM, Barros MP, Faria PA, Prieto T, Dyszy FH, Nascimento OR, Nantes IL, Bechara EJH (2009) Free Rad Biol Med 47:841–849

    Article  PubMed  CAS  Google Scholar 

  45. Auld DS, Young GB, Saunders AJ, Doyle DF, Betz SF, Pielak GJ (1993) Prot Sci 2:2187–2197

    Article  CAS  Google Scholar 

  46. Rao DK, Bhuyan AK (2007) J Biomol NMR 39:187–196

    Article  PubMed  Google Scholar 

  47. Shelnutt JA, Song X-Z, Ma J-G, Jia S-L, Jentzen W, Medforth CJ (1998) Chem Rev 27:31–41

    Article  CAS  Google Scholar 

  48. Autenrieth F, Tajkhorshid E, Baudry J, Luthey-Schulten Z (2004) J Comput Chem 25:1613–1622

    Article  PubMed  CAS  Google Scholar 

  49. Lawrence A, Jones CM, Wardman P, Burkitt MJ (2003) J Biol Chem 278:29410–29419

    Article  PubMed  CAS  Google Scholar 

  50. Cassina AM, Hodara R, Souza JM, Thomson L, Castro L, Ischiropoulos H, Freeman BA, Radi R (2000) J Biol Chem 275:21409–21415

    Article  PubMed  CAS  Google Scholar 

  51. Jang B, Han S (2006) Biochimie 88:53–58

    Article  PubMed  CAS  Google Scholar 

  52. Belikova NA, Vladimorov YA, Osipov AN, Kapralov AA, Tyurin VA, Potapovich MV, Basova LV, Peterson J, Kurnikov IV, Kagan VE (2006) Biochemistry 45:4998–5009

    Article  PubMed  CAS  Google Scholar 

  53. Kapralov AA, Kurnikov IV, Vlasova II, Belikova NA, Tyurin VA, Basova LV, Zhao Q, Tyurina YY, Jiang J, Bayir H, Vladimirov YA, Kagan VE (2007) Biochemistry 46:14232–14244

    Article  PubMed  CAS  Google Scholar 

  54. Kagan VE, Bayır HA, Belikova NA, Kapralov O, Tyurina YY, Tyurin VA, Jiang J, Stoyanovsky DA, Wipf P, Kochanek PM, Greenberger JS, Pitt B, Shvedova AA, Borisenko G (2009) Free Rad Biol Med 46:1439–1453

    Article  PubMed  CAS  Google Scholar 

  55. Kluck RM, Ellerby LM, Ellerby HM, Naiem S, Yaffe MP, Margoliash E, Bredesen D, Mauk AG, Sherman F, Newmeyer DD (2000) J Biol Chem 275:16127–16133

    Article  PubMed  CAS  Google Scholar 

  56. Yu T, Wang X, Purring-Koch C, Wei Y, McLendon GL (2001) J Biol Chem 276:13034–13038

    Article  PubMed  CAS  Google Scholar 

  57. Ferrer-Sueta G, Radi R (2009) ACS Chem Biol 4:161–177

    Article  PubMed  CAS  Google Scholar 

  58. Souza JM, Peluffo G, Radi R (2008) Free Rad Biol Med 45:357–366

    Article  PubMed  CAS  Google Scholar 

  59. Fredericks ZL, Pielak GJ (1993) Biochemistry 32:929–936

    Article  PubMed  CAS  Google Scholar 

  60. Xie J, Supekova L, Schultz PG (2007) ACS Chem Biol 2:474–478

    Article  PubMed  CAS  Google Scholar 

  61. Dickerson RE, Timkovich R (1995) In: Boyer PD (ed) The enzymes. Academic, New York, pp 397–547

  62. Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, Pelliccia G, Luzi L, Minucci S, Marcaccio M, Pinton P, Rizzuto R, Bernardi P, Paolucci F, Pelicci PG (2005) Cell 122:221–233

    Article  PubMed  CAS  Google Scholar 

  63. Macchioni L, Corazzi T, Davidescu M, Francescangeli E, Roberti R, Corazzi L (2010) Mol Cell Biochem 341:149–157

    Article  PubMed  CAS  Google Scholar 

  64. Brown GC, Borutaite V (2008) Biochim Biophys Acta 1777:877–881

    Article  PubMed  CAS  Google Scholar 

  65. Kagan VE, Tyruin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA, Osipov AN, Belikova NA, Kapralov AA, Kini V, Vlasova II, Zhao Q, Zou M, Di P, Svistunenko DA, Kurnikov IV, Borisenko GG (2005) Nat Chem Biol 1:223–232

    Article  PubMed  CAS  Google Scholar 

  66. Hüttemann M, Pecina P, Rainbolt M, Sanderson TH, Kagan VE, Samavati L, Doan JW, Lee I (2011) Mitochondrion 11:369–381

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Spanish Ministry of Science and Innovation (BFU2009-07190) and the Andalusian Government (BIO198) for financial support. The authors declare that they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Díaz-Moreno.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1 (PDF 669 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Heredia, J.M., Díaz-Quintana, A., Salzano, M. et al. Tyrosine phosphorylation turns alkaline transition into a biologically relevant process and makes human cytochrome c behave as an anti-apoptotic switch. J Biol Inorg Chem 16, 1155–1168 (2011). https://doi.org/10.1007/s00775-011-0804-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0804-9

Keywords

Navigation