Skip to main content
Log in

The CdII-binding abilities of recombinant Quercus suber metallothionein: bridging the gap between phytochelatins and metallothioneins

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In this work, we have analyzed both at stoichiometric and at conformational level the CdII-binding features of a type 2 plant metallothionein (MT) (the cork oak, Quercus suber, QsMT). To this end four peptides, the wild-type QsMT and three constructs previously engineered to characterize its ZnII- and CuI-binding behaviour, were heterologously produced in Escherichia coli cultures supplemented with CdII, and the corresponding complexes were purified up to homogeneity. The CdII-binding ability of these recombinant peptides was determined through the chemical, spectroscopic and spectrometric characterization of the recovered clusters. Recombinant synthesis of the four QsMT peptides in cadmium-rich media rendered complexes with a higher metal content than those obtained from zinc-supplemented cultures and, consequently, the recovered CdII species are nonisostructural to those of ZnII. Also of interest is the fact that three out of the four peptides yielded recombinant preparations that included S2−-containing CdII complexes as major species. Subsequently, the in vitro ZnII/CdII replacement reactions were studied, as well as the in vitro acid denaturation and S2− renaturation reactions. Finally, the capacity of the four peptides for preventing cadmium deleterious effects in yeast cells was tested through complementation assays. Consideration of all the results enables us to suggest a hairpin folding model for this typical type 2 plant CdII-MT complex, as well as a nonnegligible role of the spacer in the detoxification function of QsMT towards cadmium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2

Similar content being viewed by others

References

  1. Cobbett CS, Goldsbrough PB (2002) Annu Rev Plant Biol 53:159–182

    Article  PubMed  CAS  Google Scholar 

  2. Grill E, Winnacker E-L, Zenk M (1985) Science 230:674–676

    Article  CAS  Google Scholar 

  3. Grill E, Winnacker E-L, Zenk M (1987) Proc Natl Acad Sci USA 84:439–443

    Article  PubMed  CAS  Google Scholar 

  4. Dameron CT, Winge DR (1990) Inorg Chem 29:1343–1348

    Article  CAS  Google Scholar 

  5. Cobbett C, Goldsbrough P (2000) In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 247–269

    Google Scholar 

  6. Reese RN, Wagner GJ (1987) Biochem J 241:641–647

    PubMed  CAS  Google Scholar 

  7. Steffens JC, Hunt DF, Williams BG (1986) J Biol Chem 261:13879–13882

    PubMed  CAS  Google Scholar 

  8. Rauser WE (2000) J Plant Physiol 156:545–551

    CAS  Google Scholar 

  9. Rauser WE, Curvetto NR (1980) Nature 287:563–564

    Article  CAS  Google Scholar 

  10. Chatthai M, Kaukinen KH, Tranbarger TJ, Gupta PK, Misra S (1997) Plant Mol Biol 34:243–254

    Article  PubMed  CAS  Google Scholar 

  11. Morris CA, Nicolaus B, Sampson V, Harwood JL, Kille P (1999) Biochem J 338:553–560

    Article  PubMed  CAS  Google Scholar 

  12. Binz PA, Kägi JHR (2001) Metallothionein. http://www.bioc.uzh.ch/mtpage/MT.html

  13. Robinson NJ, Tommey AM, Kuske C, Jackson PJ (1993) Biochem J 295:1–10

    PubMed  CAS  Google Scholar 

  14. Murphy A, Taiz L (1995) Plant Physiol 109:945–954

    Article  PubMed  CAS  Google Scholar 

  15. van Hoof NA, Hassinen VH, Hakvoort HWJ, Ballintijn KF, Schat H, Verkleij JAC, Ernst WHG, Karenlampi SO, Tervahauta AI (2001) Plant Physiol 126:1519–1526

    Article  PubMed  Google Scholar 

  16. Guo W-J, Bundithya W, Goldsbrough PB (2003) New Phytol 159:369–381

    Article  CAS  Google Scholar 

  17. Navabpour S, Morris K, Allen R, Harrison E, Mackerness SAH, Buchanan-Wollaston V (2003) J Exp Bot 54:2285–2292

    Article  PubMed  CAS  Google Scholar 

  18. Ma M, Lau P-S, Jia Y-T, Tsang W-K, Lam SKS, Tam NFY, Wong Y-S (2003) Plant Sci 164:51–60

    Article  CAS  Google Scholar 

  19. Zhou J, Goldsbrough PB (1994) Plant Cell 6:875–884

    Article  PubMed  CAS  Google Scholar 

  20. Lee J, Shim D, Song W-Y, Hwang I, Lee Y (2004) Plant Mol Biol 54:805–815

    Article  PubMed  CAS  Google Scholar 

  21. Zimeri AM, Dhankher OP, McCaig B, Meagher RB (2005) Plant Mol Biol 58:839–855

    Article  PubMed  CAS  Google Scholar 

  22. Gonzalez-Duarte P (2003) In: McCleverty J, Meyer TJ (eds) Metallothioneins, comprehensive coordination chemistry II, vol. 8. Elsevier, Amsterdam, pp 213–228

  23. Tommey AM, Shi J, Lindsay WP, Urwin PE, Robinson NJ (1991) FEBS Lett 292:48–52

    Article  PubMed  CAS  Google Scholar 

  24. Kille P, Winge DR, Harwood JL, Kay J (1991) FEBS Lett 295:171–175

    Article  PubMed  CAS  Google Scholar 

  25. Bilecen K, Ozturk UH, Duru AD, Sutlu T, Petoukhov MV, Svergun DI, Koch MHJ, Sezerman UO, Cakmak I, Sayers Z (2005) J Biol Chem 280:13701–13711

    Article  PubMed  CAS  Google Scholar 

  26. Peroza EA, Freisinger E (2007) J Biol Inorg Chem (in press). doi: 10.1007/s00775-006-0195-5

  27. Freisinger E (2007) Inorg Chim Acta 360:369–380

    Article  CAS  Google Scholar 

  28. Cols N, Romero-Isart N, Capdevila M, Oliva B, González-Duarte P, González-Duarte R, Atrian S (1997) J Inorg Biochem 68:157–166

    Article  PubMed  CAS  Google Scholar 

  29. Capdevila M, Cols N, Romero-Isart N, González-Duarte R, Atrian S, González-Duarte P (1997) Cel Mol Life Sci 53:681–688

    Article  CAS  Google Scholar 

  30. Mir G, Domènech J, Huguet G, Guo WJ, Goldsbrough PB, Atrian S, Molinas M (2004) J Exp Bot 55:2483–2493

    Article  PubMed  CAS  Google Scholar 

  31. Capdevila M, Domènech J, Pagani A, Tío L, Villarreal L, Atrian S (2005) Angew Chem Int Ed Engl 44:4618–4622

    Article  PubMed  CAS  Google Scholar 

  32. Domènech J, Mir G, Huguet G, Capdevila M, Molinas M, Atrian S (2006) Biochimie 88:583–593

    Article  PubMed  Google Scholar 

  33. Bongers J, Walton CD, Richardson DE, Bell JU (1988) Anal Chem 60:2683–2686

    Article  PubMed  CAS  Google Scholar 

  34. Reese RN, Winge DR (1988) J Biol Chem 262:12832–12835

    Google Scholar 

  35. Gan T, Muñoz A, Shaw III CF, Petering DH (1995) J Biol Chem 270:5339–5345

    Article  PubMed  CAS  Google Scholar 

  36. Longo VD, Gralla EB, Valentine JS (1996) J Biol Chem 271:12275–12280

    Article  PubMed  CAS  Google Scholar 

  37. Mumberg D, Müller R, Funk M (1995) Gene 156:119–122

    Article  PubMed  CAS  Google Scholar 

  38. Domènech J, Tinti A, Capdevila M, Atrian S, Torreggiani A (2007) Biopolymers (in press). doi 10.1002/bip.20729

  39. Maret W, Vallee BL (1993) Methods Enzymol 226:52–71

    PubMed  CAS  Google Scholar 

  40. Lever ABP (1986) Inorganic electronic spectroscopy, 2nd edn. Elsevier, Amsterdam

  41. Romero-Isart N, Cols N, Termansen MK, Gelpí JL, González-Duarte R, Atrian S, Capdevila M, González-Duarte P (1999) Eur J Biochem 259:519–527

    Article  PubMed  CAS  Google Scholar 

  42. Villarreal L, Tío L, Capdevila M, Atrian S (2006) FEBS J 273:523–535

    Article  PubMed  CAS  Google Scholar 

  43. Merrifield ME, Chaseley J, Kille P, Stillman MJ (2006) Chem Res Toxicol 19:365–375

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministerio de Ciencia y Tecnología grants BIO2006-14420-C02-01 for S.A., BIO2006-14420-C02-02 for M.C. and AGL2003-00416 for M.M. G.M. and R.O. received predoctoral fellowships from the Pla de Formació de Personal Investigador del DURSI, Generalitat de Catalunya, and the Departament de Química, Universitat Autònoma de Barcelona, respectively. We especially want to acknowledge technical support from Roger Bofill and fruitful scientific discussions with Armida Torreggiani. We also thank the Serveis Científico-Tècnics de la Universitat de Barcelona (GC-FPD, ICP-AES, ESI-MS) and the Servei d’Anàlisi Química de la Universitat Autònoma de Barcelona (CD, UV–vis) for allocating instrument time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sílvia Atrian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material (DOC 0.98 Mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domènech, J., Orihuela, R., Mir, G. et al. The CdII-binding abilities of recombinant Quercus suber metallothionein: bridging the gap between phytochelatins and metallothioneins. J Biol Inorg Chem 12, 867–882 (2007). https://doi.org/10.1007/s00775-007-0241-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0241-y

Keywords

Navigation