Skip to main content
Log in

Nucleotides and inorganic phosphates as potential antioxidants

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Highly reactive OH radicals, formed in an iron-ion catalyzed Fenton reaction, are implicated in many pathological conditions. The quest for Fenton reaction inhibitors, either radical scavenger or metal-ion chelator antioxidants, spans the previous decades. Purine nucleotides were previously studied as natural modulators of the Fenton reaction; however, the modulatory role of purine nucleotides remained in dispute. Here, we have resolved this long-standing dispute and demonstrated a concentration-dependent biphasic modulation of the Fenton reaction by nucleotides. By electron spin resonance measurements with 0.1 mM Fe(II), we observed an increase of •OH production at low purine nucleotide concentrations (up to 0.15 mM), while at higher nucleotide concentrations, an exponential decay of •OH concentration was observed. We found that the phosphate moiety, not the nucleoside, determines the pro/antioxidant properties of a nucleotide, suggesting a chelation-based modulation. Furthermore, the biphasic modulation mode is probably due to diverse nucleotide–Fe(II) complexes formed in a concentration-dependent manner. At ATP concentrations much greater than Fe(II) concentrations, multiligand chelates are formed which inhibit the Fenton reaction owing to a full Fe(II) coordination sphere. In addition to natural nucleotides, we investigated a series of base- or phosphate-modified nucleotides, dinucleotides, and inorganic phosphates, as potential biocompatible antioxidants. Ap5A, inorganic thiophosphate and ATP-γ-S proved highly potent antioxidants with IC50 values of 40, 30, and 10 μM, respectively. ATP-γ-S proved 100 and 20 times more active than ATP and the potent antioxidant Trolox, respectively. In the presence of 30 μM ATP-γ-S no •OH was detected after 5 min in the Fenton reaction mixture. The most potent antioxidants identified inhibit the Fenton reaction by forming full coordination sphere chelates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10

Similar content being viewed by others

References

  1. Marks DB, Marks AD, Smith CM (1996) Basic medical biochemistry: a clinical approach. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  2. Korycka D, Malgorzata B, Richardson T (1978) Crit Rev Food Sci Nutr 10:209–241

    Article  Google Scholar 

  3. Packer L, Valenza M, Serbinova E, Starkereed P, Frost K, Kagan V (1991) Arch Biochem Biophys 288:533–537

    Article  CAS  Google Scholar 

  4. Bergman M, Perelman A, Dubinsky Z, Grossman S (2003) Phytochemistry 62:753–762

    Article  CAS  Google Scholar 

  5. Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S (2001) J Neurochem 78:1073–1082

    Article  CAS  Google Scholar 

  6. Galey JB (2001) Mini Rev Med Chem 1:233–242

    Article  CAS  Google Scholar 

  7. Faa G, Crisponi G (1999) Coor Chem Rev 184:291–310

    Article  CAS  Google Scholar 

  8. Ben-Shachar D, Eshel G, Finberg JPM, Youdim MBH (1991) J Neurochem 56:1441–1444

    Article  CAS  Google Scholar 

  9. Heinz U, Hegetschweiler K, Acklin P, Faller B, Lattmann R, Schnebli HP (1999) Angew Chem Int Ed Engl 38:2568–2570

    Article  CAS  Google Scholar 

  10. Zheng H, Weiner LM, Bar-Am O, Epsztejn S, Cabantchik ZI, Warshawsky A, Youdim MBH, Fridkin M (2005) Bioorg Med Chem 13:773–783

    Article  CAS  Google Scholar 

  11. Tadolini B (1988) Free Radical Res Commun 5:237–243

    Article  Google Scholar 

  12. Kachur AV, Manevich Y, Biaglow JE (1997) Free Radical Res 26:399–408

    Article  CAS  Google Scholar 

  13. Biaglow JE, Held KD, Manevich Y, Tuttle S, Kachur A, Uckun F (1996) Radical Res 145:554–562

    Article  CAS  Google Scholar 

  14. Floyd RA (1983) Arch Biochem Biophys 225:263–270

    Article  CAS  Google Scholar 

  15. Floyd RA, Lewis CA (1983) Biochemistry 22:2645–2649

    Article  CAS  Google Scholar 

  16. Gutteridge JM, Nagy I, Maidt L, Floyd RA (1990) Arch Biochem Biophys 277:422–428

    Article  CAS  Google Scholar 

  17. Swennen ELR, Dagnelie PC, Bast A (2006) Free Radical Res 40:53–58

    Article  CAS  Google Scholar 

  18. Hillaire-Buys D, Shahar L, Fischer B, Chulkin A, Linck N, Chapal J, Loubatieres-Mariani MM, Petit P (2001) Drug Dev Res 53:33–43

    Article  CAS  Google Scholar 

  19. Halbfinger E, Major DT, Ritzmann M, Ubl J, Reiser G, Boyer JL, Harden KT, Fischer B (1999) J Med Chem 42:5325–5337

    Article  CAS  Google Scholar 

  20. Holmes RE, Robins RK (1965) J Am Chem Soc 87:1772–1776

    Article  CAS  Google Scholar 

  21. Shaver SR, Rideout JL, Pendergast W, Douglass JG, Brown EG, Boyer JL, Patel RI, Redick CC, Jones AC, Picher M, Yerxa BR (2005) Purinergic Signal 1:183–191

    Article  CAS  Google Scholar 

  22. Kremer ML (2003) J Phys Chem 107:1734–1741

    Article  CAS  Google Scholar 

  23. Welch KD, Davis TZ, Aust SD (2002) Arch Biochem Biophys 397:360–369

    Article  CAS  Google Scholar 

  24. Winston GW, Harvey W, Berl L, Cederbaum AI (1983) Biochem J 216:415–421

    Article  CAS  Google Scholar 

  25. Gutteridge JMC (1984) Biochem J 224:761–767

    Article  CAS  Google Scholar 

  26. Richter Y, Fischer B (2003) Nucleosides Nucleotides Nucleic Acids 22:1757–1780

    Article  CAS  Google Scholar 

  27. Thomas MJ, Bielski BHJ (1989) J Am Chem Soc 111:3315–3319

    Article  CAS  Google Scholar 

  28. Panganamala RV, Miller JS, Gwebu ET, Sharma HM, Cornwell DG (1977) Prostaglandins 14:261–271

    Article  CAS  Google Scholar 

  29. Riddles PW, Blakeley RL, Zerner B (1979) Anal Chem 94:75–81

    CAS  Google Scholar 

  30. Ellman GL (1958) Arch Biochem Biophys 74:443–450

    Article  CAS  Google Scholar 

  31. Yokoi I, Toma J, Liu JK, Kabuto H, Mori A (1995) Free Radical Biol Med 19:473–479

    Article  CAS  Google Scholar 

  32. Kachur AV, Tuttle SW, Biaglow JE (1998) Radiat Res 150:475–482

    Article  CAS  Google Scholar 

  33. Sigel H (1987) Eur J Biochem 165:65–72

    Article  CAS  Google Scholar 

  34. Sigel H (1993) Chem Soc Rev 22:255–267

    Article  CAS  Google Scholar 

  35. Graf E, Mahoney JR, Bryant RG, Eaton JW (1984) J Biol Chem 259:3620–3624

    CAS  PubMed  Google Scholar 

  36. Rush JD, Maskos Z, Koppenol WH (1990) FEBS Lett 261:121–123

    Article  CAS  Google Scholar 

  37. Neuhard J, Nygaard P (1987) Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology, Washington

    Google Scholar 

  38. Boveris A (1977) Adv Exp Med Biol 78:67–82

    Article  CAS  Google Scholar 

  39. Boveris A, Chance B (1973) Biochem J 134:707–716

    Article  CAS  Google Scholar 

  40. Boveris A, Cadenas E (1982) Production of superoxide radicals and hydrogen peroxide in mitochondria. In: Oberley L (ed) Superoxide dismutase, vol II. CRC, Boca Raton, pp 15–30

  41. Lippard SJ, Berg JM. (1994) Principles of bioinorganic chemistry. University Science Books, Mill Valley

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilha Fischer.

Additional information

Patent pending.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, Y., Fischer, B. Nucleotides and inorganic phosphates as potential antioxidants. J Biol Inorg Chem 11, 1063–1074 (2006). https://doi.org/10.1007/s00775-006-0143-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0143-4

Keywords

Navigation