Skip to main content
Log in

Effects of heavy central metal on the ground and excited states of chlorophyll

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Chlorophylls, owing to their adjustable π-electron system and intense, well-separated electronic transitions, can serve as convenient intrinsic spectroscopic probes of ligand–metal center interactions. They are also interesting for their photosensitizing properties. In order to examine the heavy-atom effects on the chlorophyll triplet state, a key intermediate in chlorophyll–photosensitized reactions, the synthesis of a novel Pt(II)-substituted chlorophyll a was carried out, and the effects of the substitution on steady-state and transient photophysical properties of chlorophyll were studied by absorption and fluorescence spectroscopies, and by laser flash photolysis. The presence of highly electronegative platinum as the central ion increases the energies of the chlorophyll main absorption transitions. As laser flash photolysis experiments show, in air-equilibrated solutions, chlorophyll triplets are efficiently quenched by molecular oxygen. Interestingly, this quenching by oxygen is more effective with metal-containing pigments, in spite of the increased spin–orbit coupling, introduced with the central metals. This points to occurrence of nonspecific interactions of molecular oxygen with metallochlorophylls. The differences in the effects exerted on the pigment triplet by the central metal become distinct after the removal of oxygen. The lifetime of a Pt-chlorophyll triplet remains very short, in the range of only a few microseconds, unlike in the free-base and Mg- and Zn-substituted chlorophylls. Such drastic shortening of the triplet lifetime can be attributed to a large heavy-atom effect, implying that strong interactions must occur between the central Pt(II) ion and the chlorophyll macrocycle, which lead to a more efficient spin–orbit coupling in Pt-chlorophyll than in Pt-porphyrins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BChl:

Bacteriochlorophyll

BChla:

Bacteriochlorophyll a

Chl:

Chlorophyll

Chla:

Chlorophyll a

DEAE:

(Diethylamino)ethyl

F28TPP:

Perfluorinated tetraphenylporphyrin

HP:

Hematoporphyrin

HPLC:

High-performance liquid chromatography

ISC:

Intersystem crossing

Mg-Chla:

Magnesium-substituted chlorophyll a

PDT:

Photodynamic therapy

Pheo:

Pheophytin a

Pt-Chla:

Platinum-substituted chlorophyll a

TPP:

Tetraphenylporphyrin

Zn-Chla:

Zinc-substituted chlorophyll a

References

  1. Scheer H (1991) Chlorophylls. CRC Press, Boca Raton FL

    Google Scholar 

  2. Musewald C, Hartwich G, Lossau H, Gilch P, Pöllinger-Dammer F, Scheer H, Michel-Beyerle ME (1999) J Phys Chem 103:7055–7060

    Google Scholar 

  3. Fiedor L, Scheer H, Hunter CN, Tschirschwitz F, Voigt B, Ehlert J, Nibbering E, Leupold D, Elsaesser T (2000) Chem Phys Lett 319:145–152

    Google Scholar 

  4. Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science Books, Mill Valley, CA USA

    Google Scholar 

  5. Metzler DE (2001) Biochemistry. The chemical reactions of living cells, vol 1, 2nd edn. Hartcourt/Academic Press, Burlington

    Google Scholar 

  6. Harriman A (1980) J Chem Soc, Faraday Trans 277:1281–1291

    Google Scholar 

  7. Murov SL, Carmichael I, Hug GL (1993) Handbook of photochemistry, 2nd edn. Marcel Dekker Inc., NY USA

    Google Scholar 

  8. Baldo MA, Thompson ME, Forrest SR (1999) Pure Appl Chem 71:2095–2106

    Google Scholar 

  9. Kwong RC, Sibley S, Dubovoy T, Baldo M, Forrest SR, Thompson ME (1999) Chem Mater 11:3709–3713

    Google Scholar 

  10. Vasil’ev VV, Borisov SM (2002) Sens Actuators B 82:272–276

    Google Scholar 

  11. Moan J (1990) J Photochem Photobiol 5:521–524

    Google Scholar 

  12. Henderson B, Dougherty TJ (1992) Photochem Photobiol 55:145–157

    Google Scholar 

  13. Ochsner M (1997) J Photochem Photobiol B 39:1–18

    Google Scholar 

  14. Beems EM, Dubbelman TMAR, Lugtenburg J, van Best JA, Smeets MFMA, Boegheim JPJ (1987) Photochem Photobiol 46:639–643

    Google Scholar 

  15. Kessel D, Smith KM (1989) Photochem Photobiol 49:157–160

    Google Scholar 

  16. Spikes JD, Bommer JC (1991) In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, FL, USA, pp 1181–1204

  17. Bonnett R (1995) Chem Soc Rev 24:19–33

    Google Scholar 

  18. Rosenbach-Belkin V, Chen L, Fiedor L, Tregub I, Pavlotsky F, Brumfeld V, Salomon Y, Scherz A (1996) Photochem Photobiol 64:174–181

    Google Scholar 

  19. Rosenbach-Belkin V, Chen L, Fiedor L, Salomon Y, Scherz A (1998) In: Moser JG (ed) Photodynamic tumor therapy, 2nd and 3rd generation photosensitizers. Harwood Academic Publishers, Amsterdam, pp 117–125

  20. Bonnett R (2003) In: McCleverty JA, Meyer TJ (eds) Comprehensive coordination chemistry. Elsevier, Amsterdam, pp 945–1003

  21. Chen YH, Li GL, Pandey RK (2004) Curr Org Chem 8:1105–1134

    Google Scholar 

  22. Szaciłowski K, Macyk W, Drzewiecka-Matuszek A, Brindell M, Stochel G (2005) Chem Rev (in press)

  23. Nyman ES, Hynninen PH (2004) J Photochem Photobiol B 73:1–28

    Google Scholar 

  24. Chen Q, Huang Z, Luck D, Beckers J, Brun P-H, Wilson BC, Scherz A, Salomon Y, Hetzel FW (2002) Photochem Photobiol 76:438–445

    Google Scholar 

  25. Tremblay A, Leroy S, Freitag L, Copin M-C, Brun P-H, Marquette C-H (2003) Photochem Photobiol 78:124–130

    Google Scholar 

  26. Borle F, Radu A, Monnier P, van den Bergh H, Wagnieres G (2003) Photochem Photobiol 78:377–383

    Google Scholar 

  27. Budil DE, Thurnauer MC (1991) Biochim Biophys Acta 1057:1–41

    Google Scholar 

  28. Clarke RH, Connors RE, Schaafsma TJ, Kleibeuker JF, Platenkamp RJ (1976) J Am Chem Soc 98:3674–3677

    Google Scholar 

  29. Clarke RH, Frank HA (1977) Chem Phys Lett 51:13–17

    Google Scholar 

  30. Fiedor L, Gorman AA, Hamblett I, Rosenbach-Belkin V, Salomon Y, Scherz A, Tregub I (1993) Photochem Photobiol 58:506–511

    Google Scholar 

  31. Iriyama K, Ogura N, Takamiya A (1974) J Biochem 76:901–904

    Google Scholar 

  32. Omata T, Murata N (1983) Plant Cell Physiol 24:1093–1100

    Google Scholar 

  33. Watanabe T, Hongu A, Honda K, Nakazato M, Mazaki H, Konno M, Saitoh S (1984) Anal Chem 56:251–256

    Google Scholar 

  34. Fiedor L, Urbańska K, Stochel G (2004) Polish Patent Application P-366486

  35. Wolak M, Zahl A, Schneppensieper T, Stochel G, van Eldik R (2001) J Am Chem Soc 123:9780–9791

    Google Scholar 

  36. Katz JJ, Strain HH, Leussing DL, Dougherty RC (1968) J Am Chem Soc 90:784–791

    Google Scholar 

  37. Callahan PM, Cotton TM (1987) J Am Chem Soc 109:7001–7007

    Google Scholar 

  38. Krawczyk S (1989) Biochim Biophys Acta 976:140–149

    Google Scholar 

  39. Hartwich G, Fiedor L, Simonin I, Cmiel E, Scha1fer W, Noy D, Scherz A, Scheer H (1998) J Am Chem Soc 120:3675–3683

    Google Scholar 

  40. Ashur I, Brandis A, Greenwald M, Vakrat-Haglili Y, Rosenbach-Belkin V, Scheer H, Scherz A (2003) J Am Chem Soc 125:8852–8861

    Google Scholar 

  41. Douglas B, McDaniel D, Alexander J (1994) Concepts and models of inorganic chemistry, 3rd edn. Wiley, NY USA

    Google Scholar 

  42. Evans TA, Katz JJ (1975) Biochim Biophys Acta 396:414–426

    Google Scholar 

  43. Fiedor L, Stasiek M, Mysliwa-Kurdziel B, Strzalka K (2003) Photosynth Res 78:47–57

    Google Scholar 

  44. Cotton AA, Wilkinson G (1988) Advanced Inorganic Chemistry, 5th edn. Wiley, NY USA

    Google Scholar 

  45. Gouterman M (1961) J Mol Spectrosc 6:138–163

    Google Scholar 

  46. Fuhrhop J-H, Kadish KM, Davis DG (1973) J Am Chem Soc 95:5140–5147

    Google Scholar 

  47. Strell M, Urumow T (1977) Liebigs Ann Chem 970–974

  48. Kobayashi M, Akiyama M, Yamammura M, Kise H, Wakao N, Ishida N, Koizumi M, Kano H, Watanabe T (1999) Z Phys Chem 213:207–214

    Google Scholar 

  49. Noy D, Fiedor L, Hartwich G, Scheer H, Scherz A (1998) J Am Chem Soc 120:3684–3693

    Google Scholar 

  50. Singh A, Jonson LW (2002) Spectrochim Acta A 58:1573–1576

    Google Scholar 

  51. Kim D, Holten D, Gouterman M, Buchler JW (1984) J Am Chem Soc 106:4015–4017

    Google Scholar 

  52. Lai S-W, Hou Y-J, Che C-M, Pang H-L, Wong K-Y, Chang CK, Zhu N (2004) Inorg Chem 43:3724–3732

    Google Scholar 

  53. Hanson LK (1991) In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, FL, pp993–1012

  54. Mau AW, Puza M (1972) Photochem Photobiol 25:601–603

    Google Scholar 

  55. Krasnovsky AA, Lebedev NN, Litvin FF (1974) Dokl Akad Nauk SSSR 225:206–209

    Google Scholar 

  56. Dvornikov SS, Kniukshto VN, Solovyov KN, Tsvirko MP (1979) Opt Spectrosc (USSR) 46:689–695

    Google Scholar 

  57. Livingston R, Fujimori E (1958) J Am Chem Soc 80:5610–5613

    Google Scholar 

  58. Linschitz H, Sarkanen K (1958) J Am Chem Soc 80:4826–4832

    Google Scholar 

  59. Tait CD, Holten D (1983) Photobiochem Photobiophys 6:201–209

    Google Scholar 

  60. Azenha EG, Serra AC, Pineiro M, Pereira MM, de Melo JS, Arnaut LG, Formosinho SJ, Gonsalves AM d’AR (2002) Chem Phys 280:177–190

    Google Scholar 

  61. Fiedor J, Fiedor L, Winkler J, Scherz A, Scheer H (2001) Photochem Photobiol 74:64–71

    Google Scholar 

  62. Fiedor J, Fiedor L, Kammhuber N, Scherz A, Scheer H (2002) Photochem Photobiol 76:145–152

    Google Scholar 

  63. Krasnovsky AA, Cheng P, Blankenship RE, Moore TA, Gust D (1993) Photochem Photobiol 57:324–330

    Google Scholar 

  64. Musewald C, Hartwich G, Poellinger-Dammer F, Lossau H, Scheer H, Michel-Beyerle ME (1998) J Phys Chem B 102:8336–8342

    Google Scholar 

  65. Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR (1998) Nature 395:151–154

    Google Scholar 

  66. Woller EK, DiMagno SG (1997) J Org Chem 62:1588–1593

    Google Scholar 

  67. Macquet JP, Theophanides T (1972) Can J Chem 51:219–226

    Google Scholar 

Download references

Acknowledgements

The authors thank A. Dudkowiak for helpful discussions. The project was supported by research grants from the Jagiellonian University (CRBW 2002/2003) and KBN (2 P05 F04 628).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grażyna Stochel.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drzewiecka-Matuszek, A., Skalna, A., Karocki, A. et al. Effects of heavy central metal on the ground and excited states of chlorophyll. J Biol Inorg Chem 10, 453–462 (2005). https://doi.org/10.1007/s00775-005-0652-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0652-6

Keywords

Navigation