Skip to main content
Log in

Solvent-based deuterium isotope effects on the redox thermodynamics of cytochrome c

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The reduction thermodynamics of cytochrome c (cytc), determined electrochemically, are found to be sensitive to solvent H/D isotope effects. Reduction of cytochrome c is enthalpically more favored in D2O with respect to H2O, but is disfavored on entropic grounds. This is consistent with a reduction-induced strengthening of the H-bonding network within the hydration sphere of the protein. No significant changes in E°′ occur, since the above variations are compensative. As a main result, this work shows that the oxidation-state-dependent differences in protein solvation, including electrostatics and solvent reorganization effects, play an important role in determining the individual enthalpy and entropy changes of the reduction process. It is conceivable that this is a common thermodynamic feature of all electron transport metalloproteins. The isotope effects turn out to be sensitive to buffer anions which specifically bind to cytc. Evidence is gained that the solvation thermodynamics of both redox forms of cytc are sensibly affected by strongly hydrated anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A–C
Fig. 2A–D

Similar content being viewed by others

References

  1. Cook PF (ed) (1991) Enzyme mechanism from isotope effects. CRC Press, Boca Raton

  2. Hendriks J, Van Stokkum IH, Ellingwerf KJ (2003) Biophys J 84:1180–1191

    CAS  PubMed  Google Scholar 

  3. Toyama A, Takahashi Y, Takeuchi H (2004) Biochemistry 43:4670–4679

    Article  CAS  PubMed  Google Scholar 

  4. Penalver MJ, Rodriguex-Lopez JM, Garcia-Ruiz PA, Garcia-Canovas F, Tudela J (2003) Biochim Biophys Acta 1650:128–135

    CAS  PubMed  Google Scholar 

  5. Scheiner S (2000) Biochim Biophys Acta 1458:28–42

    Article  CAS  PubMed  Google Scholar 

  6. Hirst J, Ackrell BAC, Armstrong FA (1997) J Am Chem Soc 119:7434–7439

    Article  CAS  Google Scholar 

  7. Hille R (1991) Biochemistry 30:8522–8529

    CAS  PubMed  Google Scholar 

  8. Farver O, Zhang J, Chi Q, Pecht I, Ulstrup J (2001) Proc Natl Acad Sci USA 98:4426–4430

    Article  CAS  PubMed  Google Scholar 

  9. Némethy G, Sheraga HAJ (1964) Chem Phys 41:680–689

    Google Scholar 

  10. Ben-Naim A, Marcus YJ (1984) Chem Phys 81:2016–2027

    Article  CAS  Google Scholar 

  11. Marcus Y, Ben-Naim AJ (1985) Chem Phys 83:4744–4759

    Article  CAS  Google Scholar 

  12. Scheiner S, Čuma M (1996) J Am Chem Soc 118:1511–1521

    Article  CAS  Google Scholar 

  13. Muller NJ (1990) Acc Chem Res 23:23–28

    CAS  Google Scholar 

  14. Muller NJ (1991) Solution Chem 20:669–680

    CAS  Google Scholar 

  15. Graziano GJ (2000) J Phys Chem B 104:9249–9254

    Article  CAS  Google Scholar 

  16. Rekharsky MV, Inoue Y (2002) J Am Chem Soc 124:12361–12371

    Article  CAS  PubMed  Google Scholar 

  17. Chervenak MC, Toone EJ (1994) J Am Chem Soc 116:10533–10539

    CAS  Google Scholar 

  18. Likhodi O, Chalikian TV (2000) J Am Chem Soc 122:7860–7868

    Article  CAS  Google Scholar 

  19. Battistuzzi G, Borsari M, Sola M, Francia F (1997) Biochemistry 36:16247–16258

    Article  CAS  PubMed  Google Scholar 

  20. Battistuzzi G, Borsari M, Loschi L, Righi F, Sola M (1999) J Am Chem Soc 121:501–506

    Article  CAS  Google Scholar 

  21. Battistuzzi G, D’Onofrio M, Borsari M, Sola M, Macedo AJ, Moura JJG, Rodrigues P (2000) J Biol Inorg Chem 5:748–760

    Article  CAS  PubMed  Google Scholar 

  22. Battistuzzi G, Borsari M, Cowan JA, Sola M (2002) J Am Chem Soc 124:5315–5324

    Article  CAS  PubMed  Google Scholar 

  23. Battistuzzi G, Borsari M, Sola M (2004) J Biol Inorg Chem 9:23–26

    Article  CAS  PubMed  Google Scholar 

  24. Battistuzzi G, Borsari M, Sola M (1997) Arch Biochem Biophys 339:283–290

    Article  CAS  PubMed  Google Scholar 

  25. Makhatadze GI, Clore GM, Gronenborn AM (1995) Nat Struct Biol 2:852–855

    CAS  PubMed  Google Scholar 

  26. Gopal D, Wilson GS, Earl RA, Cusanovich MA (1988) J Biol Chem 263:11652–11656

    CAS  PubMed  Google Scholar 

  27. Krezel A, Bal W (2004) J Inorg Biochem 98:161–166

    Article  CAS  PubMed  Google Scholar 

  28. Kuwana T (1977) In: Sawyer DT (ed) Electrochemical studies of biological systems. (ACS symposium series, no. 38) American Chemical Society, Washington

  29. Yee EL, Cave RJ, Guyer KL, Tyma PD, Weaver MJ (1979) J Am Chem Soc 101:1131–1137

    CAS  Google Scholar 

  30. Battistuzzi G, Borsari M, Sola M (2001) Eur J Inorg Chem 2989–3004

  31. Battistuzzi G, Borsari M, Cowan JA, Eicken C, Loschi L, Sola M (1999) Biochemistry 38:5553–5562

    Article  CAS  PubMed  Google Scholar 

  32. Taylor JR (1982) An introduction to error analysis. The study of uncertainties in physical measurements. University Science Books, Sausalito, Calif

  33. Banci L, Bertini I, Huber JG, Spyroulias GA, Turano P (1999) J Biol Inorg Chem 4:21–31

    Article  CAS  PubMed  Google Scholar 

  34. Ikeshoij T, Taniguchi I, Hawkridge FM (1989) J Electroanal Chem 270:297–308

    Article  Google Scholar 

  35. Yuan X, Hawkridge FM, Chlebowski JF (1993) J Electroanal Chem 350:29–42

    Article  CAS  Google Scholar 

  36. Christen RP, Nomikos SI, Smith ET (1996) J Biol Inorg Chem 1:515–522

    Article  CAS  Google Scholar 

  37. Grunwald E, Steel C (1995) J Am Chem Soc 117:5687–5692

    CAS  Google Scholar 

  38. Liu L, Guo Q-X (2001) Chem Rev 101:673–695

    Article  CAS  PubMed  Google Scholar 

  39. Liu L, Yang C, Guo Q-X (2000) Biophys Chem 84:239–251

    Article  CAS  PubMed  Google Scholar 

  40. Finer-Moore JS, Kossiakoff AA, Hurley JH, Earnest T, Stroud R (1992) Proteins 12:203–222

    CAS  PubMed  Google Scholar 

  41. Hildebrandt P, Vanhecke F, Heibel G, Mauk AG (1993) Biochemistry 32:14158–14164

    CAS  PubMed  Google Scholar 

  42. Battistuzzi G, Borsari M, Canters GW, de Waal E, Loschi L, Warmerdam G, Sola M (2001) Biochemistry 40:6707–6712

    Article  CAS  PubMed  Google Scholar 

  43. Weaver MJ, Nettles SM (1980) Inorg Chem 19:1641–1646

    CAS  Google Scholar 

  44. Arnett EM, McKelvey DR (1969) In: Coetzee JF, Fitchie CD (eds) Solute–solvent interactions. Marcel Dekker, New York, pp 343–397

  45. Ben-Naim A, Wilf J, Yaakobi M (1973) J Phys Chem 77:95–102

    CAS  Google Scholar 

  46. Kresheck GC, Schneider H, Scheraga HA (1965) J Phys Chem 69:3132–3144

    CAS  PubMed  Google Scholar 

  47. Lopez M, Makhatadze GI (1998) Biophys J 74:117–125

    Article  CAS  Google Scholar 

  48. Scopes RK (1984) Protein purification. Springer, Berlin Heidelberg New York

Download references

Acknowledgements

This work was carried out with the financial support of the Ministero dell’Istruzione, dell’Università e della Ricerca of Italy (Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale, Cofin 2003), the University of Modena and Reggio Emilia and the Fondazione Cassa di Risparmio di Modena, contributo del 16/4/2002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battistuzzi, G., Borsari, M., Ranieri, A. et al. Solvent-based deuterium isotope effects on the redox thermodynamics of cytochrome c. J Biol Inorg Chem 9, 781–787 (2004). https://doi.org/10.1007/s00775-004-0580-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-004-0580-x

Keywords

Navigation