Skip to main content

Advertisement

Log in

Effect of radiation dose reduction on texture measures of trabecular bone microstructure: an in vitro study

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Osteoporosis is characterized by bone loss and degradation of bone microstructure leading to fracture particularly in elderly people. Osteoporotic bone degeneration and fracture risk can be assessed by bone mineral density and trabecular bone score from 2D projection dual-energy X-ray absorptiometry images. However, multidetector computed tomography image based quantification of trabecular bone microstructure showed significant improvement in prediction of fracture risk beyond that from bone mineral density and trabecular bone score; however, high radiation exposure limits its use in routine clinical in vivo examinations. Hence, this study investigated reduction of radiation dose and its effects on image quality of thoracic midvertebral specimens. Twenty-four texture features were extracted to quantify the image quality from multidetector computed tomography images of 11 thoracic midvertebral specimens, by means of statistical moments, the gray-level co-occurrence matrix, and the gray-level run-length matrix, and were analyzed by an independent sample t-test to observe differences in image texture with respect to radiation doses of 80, 150, 220, and 500 mAs. The results showed that three features—namely, global variance, energy, and run percentage, were not statistically significant (\(p>0.05\)) for low doses with respect to 500 mAs. Hence, it is evident that these three dose-independent features can be used for disease monitoring with a low-dose imaging protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guglielmi G, Muscarella S, Bazzocchi A (2011) Integrated imaging approach to osteoporosis: state-of-the-art review and update. Radiographics 31:1343–1364

    Article  PubMed  Google Scholar 

  2. Baum T, Garcia EG, Burgkart R, Gordijenko O, Liebl H, Jungmann PM, Gruber M, Zahel T, Rummeny EJ, Waldt S, Bauer JS (2015) Osteoporosis imaging: effects of bone preservation on MDCT-based trabecular bone microstructure parameters and finite element models. BMC Med Imaging 15:22

    Article  Google Scholar 

  3. Jeong H, Kim J, Ishida T, Akiyama M, Kim Y (2013) Computerised analysis of osteoporotic bone patterns using texture parameters characterising bone architecture. Br J Radiol 86:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ioannidis G, Papaioannou A, Hopman WM, Akhtar-Danesh N, Anastassiades T, Pickard L, Kennedy CC, Prior JC, Olszynski WP, Davison KS,  Goltzman D, Thabane L, Gafni A, Papadimitropoulos EA, Brown JP, Josse RG, Hanley DA, Adachi JD (2009) Relation between fractures and mortality: results from the Canadian Multicentre Osteoporosis Study. Can Med Assoc J 181:265–271

    Article  Google Scholar 

  5. Johnell O, Kanis J (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos int 17:1726–1733

    Article  CAS  PubMed  Google Scholar 

  6. Valentinitsch A, Patsch J, Mueller D, Kainberger F, Langs G (2010) Texture analysis in quantitative osteoporosis assessment: characterizing microarchitecture. In: 2010 IEEE international symposium on biomedical imaging: from nano to macro, New York, pp 1361–1364

  7. Bousson V, Bergot C, Sutter B, Thomas T, Bendavid S, Benhamou CL, Blain H, Brazier M, Breuil V, Briot K, Chapurlat R, Chapuis L, Cohen Solal M, Fardellone P, Feron JM, Gauvain JB, Laroche M, Legrand E, Lespessailles E, Linglart A, Marcelli C, Roux C, Souberbielle JC, Tremollieres F, Weryha G, Cortet B (2015) Trabecular bone score: where are we now? Jt Bone Spine 82:320–325

    Article  Google Scholar 

  8. Dougherty G, Henebry GM (2002) Lacunarity analysis of spatial pattern in CT images of vertebral trabecular bone for assessing osteoporosis. Med Eng Phys 24:129–138

    Article  PubMed  Google Scholar 

  9. Harvey N, Glüer C, Binkley N, McCloskey E, Brandi ML, Cooper C, Kendler D, Lamy O, Laslop A, Camargos B, Reginster JY, Rizzoli R, Kanis JA (2015) Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone 78:216–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Di Gregorio S, Del Rio L, Rodriguez-Tolra J, Bonel E, García M, Winzenrieth R (2015) Comparison between different bone treatments on areal bone mineral density (aBMD) and bone microarchitectural texture as assessed by the trabecular bone score (TBS). Bone 75:138–143

    Article  PubMed  Google Scholar 

  11. Andriole KP (2004) MDCT: a disruptive technology evolves. In: Imaging Economics. http://www.axisimagingnews.com/2004/10/mdct-a-disruptive-technology-evolves/. Accessed Oct 2016

  12. Kubo T, Ohno Y, Kauczor HU, Hatabu H (2014) Radiation dose reduction in chest CT—review of available options. Eur J Radiol 83:1953–1961

    Article  PubMed  Google Scholar 

  13. Buls N, Van Gompel G, Van Cauteren T, Nieboer K, Willekens I, Verfaillie G, Evans P, Macholl S, Newton B, de Mey J (2015) Contrast agent and radiation dose reduction in abdominal CT by a combination of low tube voltage and advanced image reconstruction algorithms. Eur Radiol 25:1023–1031

    Article  PubMed  Google Scholar 

  14. Hara AK, Paden RG, Silva AC, Kujak JL, Lawder HJ, Pavlicek W (2009) Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. Am J Roentgenol 193:764–771

    Article  Google Scholar 

  15. Ravenel JG, Scalzetti EM, Huda W, Garrisi W (2001) Radiation exposure and image quality in chest CT examinations. Am J Roentgenol 177:279–284

    Article  CAS  Google Scholar 

  16. Prasad SR, Wittram C, Shepard JA, McLoud T, Rhea J (2002) Standard-dose and 50%-reduced-dose chest CT: comparing the effect on image quality. Am J Roentgenol 179:461–465

    Article  Google Scholar 

  17. Pachon JH, Yadava G, Pal D, Hsieh J (2012) Image quality evaluation of iterative ct reconstruction algorithms: a perspective from spatial domain noise texture measures. In: SPIE medical imaging, vol 8313. International Society for Optics and Photonics, pp 83132K1–83132K9

  18. Verdun F, Racine D, Ott J, Tapiovaara M, Toroi P, Bochud F, Veldkamp W, Schegerer A, Bouwman R, Giron IH, Marshall NW, Edyvean S (2015) Image quality in CT: from physical measurements to model observers. Physica Medica 31:823–843

    Article  CAS  PubMed  Google Scholar 

  19. Petrou M, García Sevilla P (2006) Image processing: dealing with texture. John Wiley & Sons Ltd, England

  20. Qian W, Zhukov T, Song D, Tockman MS (2007) Computerized analysis of cellular features and biomarkers for cytologic diagnosis of early lung cancer. Anal Quant Cytol Histol 29:103–111

    PubMed  Google Scholar 

  21. Krishnan MMR, Venkatraghavan V, Acharya UR, Pal M, Paul RR, Min LC, Ray AK, Chatterjee J, Chakraborty C (2012) Automated oral cancer identification using histopathological images: a hybrid feature extraction paradigm. Micron 43:352–364

    Article  PubMed  Google Scholar 

  22. Lessmann B, Nattkemper TW, Hans VH, Degenhard A (2007) A method for linking computed image features to histological semantics in neuropathology. J Biomed Inform 40:631–641

    Article  CAS  PubMed  Google Scholar 

  23. Nielsen B, Hveem TS, Kildal W, Abeler VM, Kristensen GB, Albregtsen F, Danielsen HE (2015) Entropy-based adaptive nuclear texture features are independent prognostic markers in a total population of uterine sarcomas. Cytom Part A 87:315–325

    Article  CAS  Google Scholar 

  24. Ferrari RJ, Rangayyan RM, Desautels JL, Frere AF (2001) Analysis of asymmetry in mammograms via directional filtering with Gabor wavelets. IEEE Trans Med Imaging 20:953–964

    Article  CAS  PubMed  Google Scholar 

  25. Wu CM, Chen YC, Hsieh KS (1992) Texture features for classification of ultrasonic liver images. IEEE Trans Med Imaging 11:141–152

    Article  CAS  PubMed  Google Scholar 

  26. Esgiar AN, Naguib RN, Sharif BS, Bennett MK, Murray A (2002) Fractal analysis in the detection of colonic cancer images. IEEE Trans Inf Technol Biomed 6:54–58

    Article  PubMed  Google Scholar 

  27. Mookiah MRK, Acharya UR, Lim CM, Petznick A, Suri JS (2012) Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features. Knowl Based Syst 33:73–82

    Article  Google Scholar 

  28. Mookiah MRK, Acharya UR, Martis RJ, Chua CK, Lim CM, Ng E, Laude A (2013) Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: a hybrid feature extraction approach. Knowl Based Syst 39:9–22

    Article  Google Scholar 

  29. Mookiah MRK, Acharya UR, Fujita H, Koh JE, Tan JH, Chua CK, Bhandary SV, Noronha K, Laude A, Tong L (2015) Automated detection of age-related macular degeneration using empirical mode decomposition. Knowl Based Syst 89:654–668

    Article  Google Scholar 

  30. Mookiah MRK, Tan JH, Chua CK, Ng E, Laude A, Tong L (2015) Automated characterization and detection of diabetic retinopathy using texture measures. J Mech Med Biol 15:1550045–1550079

    Article  Google Scholar 

  31. Dhara AK, Mukhopadhyay S, Khandelwal N (2013) 3d texture analysis of solitary pulmonary nodules using co-occurrence matrix from volumetric lung CT images. In: SPIE medical imaging, vol 8670. International Society for Optics and Photonics, pp 867039–867045

  32. Anitha D, Subburaj K, Mei K, Kopp FK, Foehr P, Noel PB, Kirschke JS, Baum T (2016) Effects of dose reduction on bone strength prediction using finite element analysis. Sci Rep 6:38441

  33. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12:629–639

    Article  Google Scholar 

  34. Gonzalez RC, Woods RE (2008) Digital image processing, 2nd edn. Prentice Hall, New Jersey

  35. Kopp FK, Holzapfel K, Baum T, Nasirudin RA, Mei K, Garcia EG, Burgkart R, Rummeny EJ, Kirschke JS, Noël PB (2016) Effect of low-dose MDCT and iterative reconstruction on trabecular bone microstructure assessment. PloS One 11:e0159903

    Article  PubMed  PubMed Central  Google Scholar 

  36. Vallières M, Freeman C, Skamene S, El Naqa I (2015) A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 60:5471–5496

    Article  PubMed  Google Scholar 

  37. Gaztañaga E, Croft R, Dalton G (1995) Variance, skewness and kurtosis: results from the APM cluster redshift survey and model predictions. Mon Not R Astron Soc 276:336–346

    Google Scholar 

  38. Freedman D, Diaconis P (1981) On the histogram as a density estimator: L 2 theory. Probab Theory Relat Fields 57:453–476

    Google Scholar 

  39. Haralick RM, Shanmugam K et al (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 6:610–621

    Article  Google Scholar 

  40. Galloway MM (1975) Texture analysis using gray level run lengths. Comput Graph Image Process 4:172–179

    Article  Google Scholar 

  41. Nailon WH (2010) Texture analysis methods for medical image characterisation. In: Mao Y (ed) Biomedical Imaging. InTech, pp 75–100

  42. Chu A, Sehgal CM, Greenleaf JF (1990) Use of gray value distribution of run lengths for texture analysis. Pattern Recognit Lett 11:415–419

    Article  Google Scholar 

  43. Dasarathy BV, Holder EB (1991) Image characterizations based on joint gray level-run length distributions. Pattern Recognit Lett 12:497–502

    Article  Google Scholar 

  44. Thibault G, Fertil B, Navarro C, Pereira S, Cau P, Levy N, Sequeira J, Mari J (2009) Texture indexes and gray level size zone matrix application to cell nuclei classification. In: 10th International Conference on Pattern recognition and information processing (PRIP), Minsk, Belarus, pp 140–145

    Google Scholar 

  45. Brenner DJ, Hall EJ (2007) Computed tomography-an increasing source of radiation exposure. N Engl J Med 357:2277–2284

    Article  CAS  PubMed  Google Scholar 

  46. Yu L, Liu X, Leng S, Kofler JM, Ramirez-Giraldo JC, Qu M, Christner J, Fletcher JG, McCollough CH (2009) Radiation dose reduction in computed tomography: techniques and future perspective. Imaging Med 1:65–84

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kubo T, Lin PJP, Stiller W, Takahashi M, Kauczor HU, Ohno Y, Hatabu H (2008) Radiation dose reduction in chest CT: a review. Am J Roentgenol 190:335–343

    Article  Google Scholar 

  48. Showalter C, Clymer BD, Richmond B, Powell K (2006) Three-dimensional texture analysis of cancellous bone cores evaluated at clinical CT resolutions. Osteoporos Int 17:259–266

    Article  PubMed  Google Scholar 

  49. Raja J , Khan M, Ramachandra V, Al-Kadi O (2014) Texture analysis of CT images in the characterization of oral cancers involving buccal mucosa. Dentomaxillofac Radiol 41:475–480

  50. McCollough CH, Primak AN, Braun N, Kofler J, Yu L, Christner J (2009) Strategies for reducing radiation dose in CT. Radiol Clin N Am 47:27–40

    Article  PubMed  PubMed Central  Google Scholar 

  51. Suoranta S, Holli-Helenius K, Koskenkorva P, Niskanen E, Könönen M, Äikiä M, Eskola H, Kälviäinen R, Vanninen R (2013) 3d texture analysis reveals imperceptible MRI textural alterations in the thalamus and putamen in progressive myoclonic epilepsy type 1, EPM1. PloS One 8:e69905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stamm G, Nagel HD (2002) CT-expo—a novel program for dose evaluation in CT. RoFo 174:1570–1576

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the following research grants: Deutsche Forschungsgemeinschaft BA 4085/2-1 (Jan S. Kirschke) and BA 4906/1-1 (Thomas Baum), Technical University of Munich Faculty of Medicine grant H-01 (Thomas Baum), and Singapore University of Technology and Design Start-up Research Grant SRG EPD 2015 093 (Karupppasamy Subburaj). The funding agencies had no role in study design, data collection, data analysis, decision to publish the findings, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Karupppasamy Subburaj, Thomas Baum, Jan S.Kirschke, and Muthu Rama Krishnan Mookiah. Formal analysis: Muthu Rama Krishnan Mookiah and Karupppasamy Subburaj. Funding acquisition: Jan S.Kirschke, Thomas Baum, and Karupppasamy Subburaj. Investigation: Karupppasamy Subburaj and Thomas Baum. Data curation: Thomas Baum, Kai Mei, Georg Kaissis, Peter Foehr, Peter B. Noel, Jan S.Kirschke, and Felix K. Kopp. Methodology: Karupppasamy Subburaj, Thomas Baum, and Muthu Rama Krishnan Mookiah. Project administration: Jan S.Kirschke, Thomas Baum, and Karupppasamy Subburaj. Resources: Thomas Baum, Kai Mei, Georg Kaissis, Peter Foehr, Peter B. Noel, and Jan S.Kirschke. Software: Muthu Rama Krishnan Mookiah and Karupppasamy Subburaj. Supervision: Karupppasamy Subburaj,, Thomas Baum, and Peter B. Noel. Validation: Karupppasamy Subburaj,, Thomas Baum, and Muthu Rama Krishnan Mookiah. Visualization: Karupppasamy Subburaj and Muthu Rama Krishnan Mookiah. Writing—original draft: Muthu Rama Krishnan Mookiah and Karupppasamy Subburaj. Writing—review and editing: Muthu Rama Krishnan Mookiah, Thomas Baum, Kai Mei, Felix K. Kopp, Georg Kaissis, Peter Foehr, Peter B. Noel, Jan S.Kirschke, and Karupppasamy Subburaj.

Corresponding author

Correspondence to Karupppasamy Subburaj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Appendix

Appendix

$$\begin{aligned} \text {HG1: Global-Variance}=\frac{\sum _{x=1}^{M}\sum _{y=1}^{N}\{f(x,y)-\mu \}^2}{M \times N} \end{aligned}$$
(4)
$$\begin{aligned} \text {HG2: Global-Skewness}=\frac{1}{M \times N}\frac{\sum _{x=1}^{M}\sum _{y=1}^{N}\{f(x,y)-\mu \}^3}{\sigma ^3} \end{aligned}$$
(5)
$$\begin{aligned} \text {HG3: Global-Kurtosis}=\frac{1}{M \times N}\frac{\sum _{x=1}^{M}\sum _{y=1}^{N}\{f(x,y)-\mu \}^4}{\sigma ^4} \end{aligned}$$
(6)
$$\begin{aligned} \text {GL1: Energy}=\sum _{l=0}^{N_{g}-1}\sum _{m=0}^{N_{g}-1}p(l,m)^2 \end{aligned}$$
(7)
$$\begin{aligned} \text {GL2: Contrast}=\sum _{n=0}^{N_{g}-1} n^{2}{\sum _{l=1}^{N_{g}}\sum _{m=1}^{N_{g}}p(l,m)},|l-m |=n \end{aligned}$$
(8)
$$\begin{aligned} \text {GL3: Correlation}=\frac{\sum _{l=0}^{N_{g}-1}\sum _{m=0}^{N_{g}-1}\{l\times m\}\times p(l,m)-\{\mu _{l}\times \mu _{m}\}}{\sigma _{l}\sigma _{m}} \end{aligned}$$
(9)
$$\begin{aligned} \text {GL4: Homogeneity}=\sum _{l=0}^{N_{g}-1}\sum _{m=0}^{N_{g}-1}\frac{1}{1+(l-m)^2}p(l,m) \end{aligned}$$
(10)
$$\begin{aligned} \text {GL5: Dissimilarity}=\sum _{l=0}^{N_{g}-1}\sum _{m=0}^{N_{g}-1} |l-m |p(l,m) \end{aligned}$$
(11)
$$\begin{aligned} \text {GL6: Entropy}=-\sum _{l=0}^{N_{g}-1}\sum _{m=0}^{N_{g}-1}p(l,m) \times log (p(l,m)) \end{aligned}$$
(12)
$$\begin{aligned} \text {GL7: Variance}=\sum _{l=2}^{2N_{g}}(l-S_{E})^2p_{x+y}(l), S_{E}=-\sum _{l=2}^{2N_{g}}p_{x+y}(l)log\{p_{x+y}(l)\} \end{aligned}$$
(13)
$$\begin{aligned} \text {GL8: Sum Average}=\sum _{l=2}^{2N_{g}}lp_{x+y}(l) \end{aligned}$$
(14)
$$\begin{aligned} \text {GR1: SRE}=\frac{\sum _{l=1}^{N_{g}}\sum _{m=1}^{N_{r}} \frac{p(l,m)}{m^2}}{\sum _{l=1}^{N_{g}}\sum _{m=1}^{N_{r}}p(l,m)} \end{aligned}$$
(15)
$$\begin{aligned} \text {GR2: LRE}=\frac{\sum _{l=1}^{N_{g}}\sum _{m=1}^{N_{r}}m^2p(l,m)}{\sum _{l=1}^{N_{g}}\sum _{m=1}^{N_{r}}p(l,m)} \end{aligned}$$
(16)
$$\begin{aligned} \text {GR3: GLN}=\frac{\sum _{l=1}^{N_{g}} \left( \sum _{m=1}^{N_{r}}p(l,m)\right) ^2}{\sum _{l=1}^{N_{g}} \sum _{m=1}^{N_{r}}p(l,m)} \end{aligned}$$
(17)
$$\begin{aligned} \text {GR4: RLN}=\frac{\sum _{m=1}^{N_{r}} \left( \sum _{l=1}^{N_{g}}p(l,m)\right) ^2}{\sum _{l=1}^{N_{g}} \sum _{m=1}^{N_{r}}p(l,m)} \end{aligned}$$
(18)
$$\begin{aligned} \text {GR5: RP}=\frac{\sum _{l=1}^{N_{g}}\sum _{m=1}^{N_{r}}p(l,m)}{P} \end{aligned}$$
(19)
$$\begin{aligned} \text {GR6: LGLRE}=\frac{\sum _{l=1}^{N_{g}}\sum _{m=1}^{N_{r}}\frac{p(l,m)}{l^2}}{\sum _{l=1}^{N_{g}}\sum _{m=1}^{N_{r}}p(l,m)} \end{aligned}$$
(20)
$$\begin{aligned} \text {GR7: HGLRE}=\frac{\sum _{l=1}^{N_{g}}\sum _{m=1}^{N_{r}}p(l,m)\cdot {l^2}}{\sum _{l=1}^{N_{g}}\sum _{m=1}^{N_{r}}p(l,m)} \end{aligned}$$
(21)
$$\begin{aligned} \text {GR8: SRLGE}=\frac{\sum _{l=1}^{N_{g}}\sum _{m=1}^{N_{r}} \frac{p(l,m)}{{l^2}\cdot {m^2}}}{\sum _{l=1}^{N_{g}}\sum _{m=1}^{N_{r}}p(l,m)} \end{aligned}$$
(22)
$$\begin{aligned} \text {GR9: SRHGE}=\frac{\sum _{l=1}^{N_{g}}\sum _{m=1}^{N_{r}} \frac{p(l,m)\cdot {l^2}}{m^2}}{\sum _{l=1}^{N_{g}}\sum _{m=1}^{N_{r}}p(l,m)} \end{aligned}$$
(23)
$$\begin{aligned} \text {GR10: LRLGE}=\frac{\sum _{l=1}^{N_{g}}\sum _{m=1}^{N_{r}} \frac{p(l,m)\cdot {m^2}}{l^2}}{\sum _{l=1}^{N_{g}}\sum _{m=1}^{N_{r}}p(l,m)} \end{aligned}$$
(24)
$$\begin{aligned} \text {GR11: LRHGE}=\frac{\sum _{l=1}^{N_{g}}\sum _{m=1}^{N_{r}}p(l,m) \cdot {m^2}\cdot {l^2}}{\sum _{l=1}^{N_{g}}\sum _{m=1}^{N_{r}}p(l,m)} \end{aligned}$$
(25)
$$\begin{aligned} \text {GR12: GLV}=\frac{\sum _{l=1}^{N_{g}}\sum _{m=1}^{N_{r}} (l \times p(l,m)- \mu _{N_{g}})^2}{N_{g} \times N_{r}}, \mu _{N_{g}}=\frac{\sum _{l=1}^{N_{g}}\sum _{m=1}^{N_{r}}l\times p(l,m)}{N_{g} \times N_{r}} \end{aligned}$$
(26)
$$\begin{aligned} \text {GR13: RLV}=\frac{\sum _{l=1}^{N_{g}}\sum _{m=1}^{N_{r}} (m \times p(l,m)- \mu _{N_{r}})^2}{N_{g} \times N_{r}}, \mu _{N_{r}}=\frac{\sum _{l=1}^{N_{g}}\sum _{m=1}^{N_{r}}m\times p(l,m)}{N_{g} \times N_{r}} \end{aligned}$$
(27)

where M and N denote the number of rows and columns in the gray-level image, f(xy) is the voxel intensity information in the x and y directions, \(\mu\) is the mean gray levels, p(lm) represents the normalized gray-tone spatial dependence matrix, \(N_{g}\) denotes the number of gray levels in the quantized image, \(N_{r}\) denotes the number of different run lengths in the GLCM, \(\mu _{l}\), \(\mu _{m}\), \(\sigma _{l}\), and \(\sigma _{m}\) denote the mean and standard deviation of \(p_{l}\) and \(p_{m}\), i and j denote the gray-level range and run length, \(p_{x}(l)=\sum _{m=0}^{N_{g}-1 }p(l,m)\), \(p_{y}(m)=\sum _{l=0}^{N_{g}-1 }p(l,m)\), \(\mu _{x}=\sum _{l=0}^{N_{g}-1} l p_{x}(l)\), \(\mu _{y}=\sum _{m=0}^{N_{g}-1} m p_{y}(m)\), \(p_{x+y}(n)=\sum _{l=0}^{N_{g}-1}\sum _{m=0}^{N_{g}-1} p(l,m),l+m=n\), and P denotes the number of gray tones in the GLCM.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mookiah, M.R.K., Baum, T., Mei, K. et al. Effect of radiation dose reduction on texture measures of trabecular bone microstructure: an in vitro study. J Bone Miner Metab 36, 323–335 (2018). https://doi.org/10.1007/s00774-017-0836-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-017-0836-5

Keywords

Navigation