Skip to main content
Log in

Vertebral fracture risk and alendronate effects on osteoporosis assessed by a computed tomography-based nonlinear finite element method

  • Review Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Computed tomography-based nonlinear finite element method (CT/FEM) can accurately predict vertebral compressive strength ex vivo and this method is clinically available in vivo. This study aimed to assess vertebral fracture risk and alendronate effects on osteoporosis in vivo using CT/FEM. Vertebral strength in 123 postmenopausal women was analyzed and the discriminatory power for vertebral fracture was assessed cross-sectionally. Alendronate effects were also prospectively assessed in 33 patients with postmenopausal osteoporosis who were treated with alendronate at a dose of 5 mg/day for 18 months. CT/FEM had higher discriminatory power for vertebral fracture than areal bone mineral density (BMD) and volumetric BMD and detected alendronate effects at 3 months. Marked bone density increases were noted in juxtacortical areas compared to inner trabecular areas. CT/FEM was useful for assessing vertebral fracture risk and therapeutic effects on osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795

    Google Scholar 

  2. Kanis JA, Delmas P, Burckhardt P, Cooper C, Torgerson D (1997) Guidelines for diagnosis and management of osteoporosis. The European Foundation for Osteoporosis and Bone Disease. Osteoporos Int 7:390–406

    Article  PubMed  CAS  Google Scholar 

  3. World Health Organization (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 843:1–129

    Google Scholar 

  4. Edmondston SJ, Singer KP, Day RE, Breidahl PD, Price RI (1994) In vitro relationships between vertebral body density, size and compressive strength in the elderly thoracolumbar spine. Clin Biomech 9:180–186

    Article  Google Scholar 

  5. Cheng XG, Nicholson PH, Boonen S, Lowet G, Brys P, Aerssens J, Van der Perre G, Dequeker J (1997) Prediction of vertebral strength in vitro by spinal bone densitometry and calcaneal ultrasound. J Bone Miner Res 12:1721–1728

    Article  PubMed  CAS  Google Scholar 

  6. Myers BS, Arbogast KB, Lobaugh B, Harper KD, Richardson WJ, Drezner MK (1994) Improved assessment of lumbar vertebral body strength using supine lateral dual-energy X-ray absorptiometry. J Bone Miner Res 9:687–693

    Article  PubMed  CAS  Google Scholar 

  7. Bjarnason K, Hassager C, Svendsen OL, Stang H, Christiansen C (1996) Anteroposterior and lateral spinal DXA for the assessment of vertebral body strength: comparison with hip and forearm measurement. Osteoporos Int 6:37–42

    Article  PubMed  CAS  Google Scholar 

  8. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259

    Article  PubMed  CAS  Google Scholar 

  9. Brekelmans WA, Poort HW, Slooff TJ (1972) A new method to analyse the mechanical behaviour of skeletal parts. Acta Orthop Scand 43:301–317

    Article  PubMed  CAS  Google Scholar 

  10. Huiskes R, Chao EY (1983) A survey of finite element analysis in orthopedic biomechanics: the first decade. J Biomech 16:385–409

    Article  PubMed  CAS  Google Scholar 

  11. Faulkner KG, Cann CE, Hasegawa BH (1991) Effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis. Radiology 179:669–674

    PubMed  CAS  Google Scholar 

  12. Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP (1999) Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech 32:1013–1020

    Article  PubMed  CAS  Google Scholar 

  13. Keyak JH, Rossi SA, Jones KA, Skinner HB (1998) Prediction of femoral fracture load using automated finite element modeling. J Biomech 31:125–133

    Article  PubMed  CAS  Google Scholar 

  14. Keyak JH, Rossi SA, Jones KA, Les CM, Skinner HB (2001) Prediction of fracture location in the proximal femur using finite element models. Med Eng Phys 23:657–664

    Article  PubMed  CAS  Google Scholar 

  15. Keyak JH (2001) Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med Eng Phys 23:165–173

    Article  PubMed  CAS  Google Scholar 

  16. Bessho M, Ohnishi I, Matsuyama J, Matsumoto T, Imai K, Nakamura K (2007) Prediction of strength and strain of the proximal femur by a CT-based finite element method. J Biomech 40:1745–1753

    Article  PubMed  Google Scholar 

  17. Silva MJ, Keaveny TM, Hayes WC (1998) Computed tomography-based finite element analysis predicts failure loads and fracture patterns for vertebral sections. J Orthop Res 16:300–308

    Article  PubMed  CAS  Google Scholar 

  18. Martin H, Werner J, Andresen R, Schober HC, Schmitz KP (1998) Noninvasive assessment of stiffness and failure load of human vertebrae from CT-data. Biomed Tech 43:82–88

    Article  CAS  Google Scholar 

  19. Buckley JM, Loo K, Motherway J (2007) Comparison of quantitative computed tomography-based measures in predicting vertebral strength. Bone 40:767–774

    Article  PubMed  Google Scholar 

  20. Crawford RP, Cann CE, Keaveny TM (2003) Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33:744–750

    Article  PubMed  Google Scholar 

  21. Liebschner MA, Kopperdahl DL, Rosenberg WS, Keaveny TM (2003) Finite element modeling of the human thoracolumbar spine. Spine 28:559–565

    PubMed  Google Scholar 

  22. Imai K, Ohnishi I, Bessho M, Nakamura K (2006) Nonlinear finite element model predicts vertebral bone strength and fracture site. Spine 31:1789–1794

    Article  PubMed  Google Scholar 

  23. Imai K, Ohnishi I, Yamamoto S, Nakamura K (2008) In vivo assessment of lumbar vertebral strength in elderly women using computed tomography-based nonlinear finite element model. Spine 33:27–32

    Article  PubMed  Google Scholar 

  24. Orimo H, Hayashi Y, Fukunaga M, Sone T, Fujiwara S, Shiraki M, Kushida K, Miyamoto S, Soen S, Nishimura J, Oh-Hashi Y, Hosoi T, Gorai I, Tanaka H, Igai T, Kishimoto H (2001) Diagnostic criteria for primary osteoporosis: year 2000 revision. J Bone Miner Metab 19:331–337

    Article  PubMed  CAS  Google Scholar 

  25. Imai K, Ohnishi I, Matsumoto T, Yamamoto S, Nakamura K (2009) Assessment of vertebral fracture risk and therapeutic effects of alendronate in postmenopausal women using a quantitative computed tomography-based nonlinear finite element method. Osteoporosis Int 20:801–810

    Article  CAS  Google Scholar 

  26. Melton LJ III, Riggs BL, Keaveny TM, Achenbach SJ, Hoffmann PF, Camp JJ, Rouleau PA, Bouxsein ML, Amin S, Atkinson EJ, Robb RA, Khosla S (2007) Structural determinants of vertebral fracture risk. J Bone Miner Res 22:1885–1892

    Article  PubMed  Google Scholar 

  27. Keaveny TM, Donley DW, Hoffmann PF, Mitlak BH, Glass EV, San Martin JA (2007) Effects of teriparatide and alendronate on vertebral strength as assessed by finite element modeling of QCT scans in women with osteoporosis. J Bone Miner Res 22:149–157

    Article  PubMed  CAS  Google Scholar 

  28. McClung MR, San Martin J, Miller PD, Civitelli R, Bandeira F, Omizo M, Donley DW, Dalsky GP, Eriksen EF (2005) Opposite bone remodeling effects of teriparatide and alendronate in increasing bone mass. Arch Intern Med 165:1762–1768

    Article  PubMed  CAS  Google Scholar 

  29. Black DM, Greenspan SL, Ensrud KE, Palermo L, McGowan JA, Lang TF, Garnero P, Bouxsein ML, Bilezikian JP, Rosen CJ (2003) The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med 349:1207–1215

    Article  PubMed  CAS  Google Scholar 

  30. Dougherty G, Newman D (1999) Measurement of thickness and density of thin structures by computed tomography: a simulation study. Med Phys 26:1341–1348

    Article  PubMed  CAS  Google Scholar 

  31. Prevrhal S, Engelke K, Kalender WA (1999) Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters. Phys Med Biol 44:751–764

    Article  PubMed  CAS  Google Scholar 

  32. Cummings SR, Karpf DB, Harris F, Genant HK, Ensrud K, LaCroix AZ, Black DM (2002) Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med 112:281–289

    Article  PubMed  CAS  Google Scholar 

  33. Matsumoto T, Ohnishi I, Bessho M, Imai K, Ohashi S, Nakamura K (2009) Prediction of vertebral strength under loading conditions occurring in activities of daily living using a computed tomography-based nonlinear finite element method. Spine 34:1464–1469

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Imai.

Additional information

K. Imai is a recipient of the 2007 JSBMR Young Investigator Award.

About this article

Cite this article

Imai, K. Vertebral fracture risk and alendronate effects on osteoporosis assessed by a computed tomography-based nonlinear finite element method. J Bone Miner Metab 29, 645–651 (2011). https://doi.org/10.1007/s00774-011-0281-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-011-0281-9

Keywords

Navigation