Skip to main content
Log in

Effects of genistein on vertebral trabecular bone microstructure, bone mineral density, microcracks, osteocyte density, and bone strength in ovariectomized rats

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Until now, the effects of phytoestrogen on bone in both women and ovarian hormone-deficient animal models of osteoporosis have remained uncertain. We have aimed here to investigate the effect of genistein (GEN) on trabecular bone quality in ovariectomized (OVX) rats. Forty 7-month-old female Sprague-Dawley rats were randomly divided into the following four groups: OVX, sham-operated (SHAM), treated with 17β-estradiol (EST, 10 μg·kg−1·day−1), and GEN (5 mg·kg−1·day−1). At 15 weeks postoperation, the compressive test was performed on the L5 vertebral body; additionally, microcomputed tomography (μ-CT) assessment was performed to estimate the bone mineral density (BMD) and microstructure parameters of the L6 vertebral body. After fatigue damage testing, the L6 vertebral body was bulk-stained in 1% basic fuchsin and embedded in methylmethacrylate. The L4 vertebral body was embedded in methylmethacrylate for dynamic histomorphometry analysis without staining. Mounted bone slices were used to measure microcrack parameters, empty osteocyte lacuna density (e.Lc.Dn), and osteocyte density (Ot.N/T.Ar). Maximum loading (ML) and Ot.N/T.Ar were significantly lower in the OVX group than in the other groups. E.Lc.Dn was significantly decreased in GEN and EST groups compared to the OVX group. ML was significantly decreased in the GEN group compared to the SHAM group. Microcrack density, microcrack surface density, and microcrack length were significantly increased in the OVX group compared to the other groups. Mineral apposition rate was significantly decreased in the OVX group compared to the SHAM and GEN groups. Bone formation rate was significantly decreased in the OVX group compared to other groups. There were no significant differences with regard to mineralizing surface among the four groups. Volumetric BMD at organ was significantly lower in OVX, EST, and GEN groups than in the SHAM group. Bone mineral content was significantly lower in the OVX group than in the SHAM group. Bone volume fraction and trabecular number were significantly decreased in OVX, EST, and GEN groups compared to the SHAM group. Structure model index was significantly lower in the SHAM group than in OVX, EST, and GEN groups. Trabecular separation was significantly increased in the OVX group compared to SHAM and EST groups. There were no significant differences with regard to the trabecular thickness (Tb,Th) between SHAM, GEN, and OVX groups. Tb.Th was significantly lower in the EST group than in the SHAM group. Connectivity density (Conn.D) was significantly lower in the OVX group than in SHAM and GEN groups, and Conn. D was significantly lower in the EST group than in GEN. In conclusion, the present study demonstrates that GEN preserved the biomechanical quality of the trabecular bone regardless of the microstructure and BMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cosman F, Lindsay R (1999) Selective estrogen receptor modulators: clinical spectrum. Endocr Rev 20:418–434

    Article  PubMed  CAS  Google Scholar 

  2. Setchell KDR (2001) Soy isoflavones—benefits and risks from nature’s selective estrogen receptor modulator (SERMs). J Am Coll Nutr 20:S 354–362

    Google Scholar 

  3. Brezinski A, Debi A (1999) Phytoestrogens: the “natural” selective estrogen receptor modulators. Eur J Obstet Gynecol Reprod Biol 85:47–51

    Article  Google Scholar 

  4. Blair HC, Jordan SE, Peterson TG Barnes S (1996) Variable effects of tyrosine kinase inhibitors on avian osteoclastic activity and reduction of bone loss in ovariectomized rats. J Cell Biochem 61:629–637

    Article  PubMed  CAS  Google Scholar 

  5. Ishimi Y, Miyaura C, Ohmura M, Onoe Y, Sato T, Uchiyama Y, Ito M, Wang X, Suda T, Ikegami S (1999) Selective effects of genistein, a soybean isoflavone, on B-lymphopoiesis and bone loss caused by estrogen deficiency. Endocrinology 140:1893–1900

    Article  PubMed  CAS  Google Scholar 

  6. Potter SM, Baum JA, Teng H, Stillman RJ, Shay NF, Erdman JWJ (1998) Soy protein and isoflavones: their effects on blood lipids and bone density in postmenopausal women. Am J Clin Nutr 68: S1375–1379

    Google Scholar 

  7. Dalais FS, Rice GE, Wahlqvist ML, Grehan M, Murkies AL, Medley G, Ayton R, Strauss BJ (1998) Effects of dietary phytoestrogens in postmenopausal women. Climacteric 1:124–129

    Article  PubMed  CAS  Google Scholar 

  8. Ho SC, Chan SG, Yi Q, Wong E, Leung PC (2001) Soy intake and the maintenance of peak bone mass in Hong Kong Chinese women. J Bone Miner Res 16:1363–1369

    Article  PubMed  CAS  Google Scholar 

  9. Gallagher JC, Rafferty K, Haynatzka V, Wilson M (2000) Effects of soy protein on bone metabolism. J Nutr 130:S667

    Google Scholar 

  10. Arjmandi BH, Alekel L, Hollis BW, Amin D, Stacewica-Sapuntzakis M, Gou P (1996) Dietary soy protein prevents bone loss in an ovariectomized rat model of osteoporosis. J Nutr 126:161–167

    PubMed  CAS  Google Scholar 

  11. Arjmandi BH, Birnbaum R, Goyal NV, Getlinger MJ, Juma S, Alekel L, Hasler CM, Drum ML, Hollis BW, Kukreja SC (1998) Bone-sparing effect of soy protein in ovarian hormone deficient rats is related to its isoflavone content. Am J Clin Nutr 68:S 1364–1368

    Google Scholar 

  12. Picherit C, Chanteranne B, Bennetau-Pelissero C, Davicco MJ, Lebecque P, Barlet JP, Coxam V (2001) Dose-dependent bonesparing effects of dietary isoflavones in the ovariectomized rat. Br J Nutr 85:307–316

    Article  PubMed  CAS  Google Scholar 

  13. Majumdar S, Kothari M, Augat P, Newitt DC, Link TM, Lin JC, Lang T, Lu Y, Genant HK (1998) High resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone (NY) 22:445–454

    CAS  Google Scholar 

  14. Ammann P, Rizzoli R (2003) Bone strength and its determinants. Osteoporos Int 14:S13–S18

    Article  PubMed  Google Scholar 

  15. Delmas PD, Seeman E (2004) Changes in bone mineral density explain little of the reduction in vertebral or nonvertebral fracture risk with anti-resorptive therapy. Bone (NY) 34:599–604

    CAS  Google Scholar 

  16. Allen MR, Iwata K, Sato M, Burr DB (2006) Raloxifene enhances vertebral mechanical properties independent of bone density. Bone (NY) 39:1130–1135

    CAS  Google Scholar 

  17. Seeman E (2001) Clinical review 137: sexual dimorphism in skeletal size, density, and strength. J Clin Endocrinol Metab 86: 4576–4584

    Article  PubMed  CAS  Google Scholar 

  18. Compston J (2006) Bone quality: what is it and how is it measured? Arq Bras Endocrinol Metab 50:579–585

    Article  Google Scholar 

  19. Dai RC, Liao EY, Yang C, W XP, Jiang Y (2004) Microcracks: an alternative index for evaluating bone biomechanical quality. J Bone Miner Metab 22:215–223

    Article  PubMed  CAS  Google Scholar 

  20. Frank JD, Ryan M, Kalscheur VL, Ruaux-Mason CP, Hozak RR, Muir P (2002) Aging and accumulation of microdamage in canine bone. Bone (NY) 30:201–206

    CAS  Google Scholar 

  21. Fanti P, Monier-Faugere MC, Geng Z, Schmidt J, Morris PE, Cohen D, Malluche HH (1998) The phytoestrogen genistein reduces bone loss in short-term ovariectomized rats. Osteoporos Int 8:274–281

    Article  PubMed  CAS  Google Scholar 

  22. Bouali Y, Gaillard-Kelly M, Marie PJ (2001) Effect of trimegestone alone or in combination with estradiol on bone mass and bone turnover in an adult rat model of osteopenia. Gynecol Endocrinol 15:48–55

    Article  PubMed  CAS  Google Scholar 

  23. Hott M, de Pollak C, Modrowski D, Marie PJ (1993) Short-term effects of organic silicon on trabecular bone in mature ovariectomized rats. Calcif Tissue Int 53:174–179

    Article  PubMed  CAS  Google Scholar 

  24. Modder UI, Riggs BL, Spelsberg TC, Fraser DG, Atkinson EJ, Arnold R, Khosla S (2004) Dose-response of estrogen on bone versus the uterus in ovariectomized mice. Eur J Endocrinol 151:503–510

    Article  PubMed  Google Scholar 

  25. Peng WJ, Jiang JL, Jia SJ, Li D, Zhang XJ, Luo D, Liao EY, Deng HW, Li YJ (2005) Asymmetric dimethylarginine is not involved in ovariectomy-induced osteopenia in rats. Comp Med 55:30–33

    PubMed  CAS  Google Scholar 

  26. Yamamoto Y, Kurabayashi T, Tojo Y, Yahata T, Honda A, Tomita M, Tanaka K (1998) Effects of progestins on the metabolism of cancellous bone in aged oophorectomized rats. Bone (NY) 22:533–537

    CAS  Google Scholar 

  27. Sheng Z, Dai R, Wu X, Fang L, Fan H, Liao E (2007) Regionally specific compensation for bone loss in the tibial trabeculae of estrogen-deficient rats. Acta Radiol 48:531–539

    Article  PubMed  CAS  Google Scholar 

  28. Burr DB, M Hooser (1995) Alterations to the en bloc basic fuchsin staining protocol for the demonstration of microdamage produced in vivo. Bone (NY) 17:431–433

    CAS  Google Scholar 

  29. Da Costa Go’mez TM, Barrett JG, Sample SJ, Radtke CL, Kalscheur VL, Lu Y, Markel MD, Santschi EM, Scollay MC, Muir P (2005) Up-regulation of site-specific remodeling without accumulation of microcracking and loss of osteocytes. Bone (NY) 37:3716–3724

    Google Scholar 

  30. Hapidin H, Othman F, Soelaiman IN, Shuid AN, Luke DA, Mohamed N (2007) Negative effects of nicotine on bone-resorbing cytokines and bone histomorphometric parameters in male rats. J Bone Miner Metab 25:93–98

    Article  PubMed  CAS  Google Scholar 

  31. Hotchkiss CE, Weis C, Blaydes B, Newbold R, Delclos KB (2005) Multigenerational exposure to genistein does not increase bone mineral density in rats. Bone (NY) 37:720–727

    CAS  Google Scholar 

  32. Anderson JJB, Ambrose WW, Garner SC (1998) Biphasic effects of genistein on bone tissue in the ovariectomized lactating rat model. Proc Soc Exp Biol Med 217:345–350

    PubMed  CAS  Google Scholar 

  33. Hertrampfa T, Grucaa MJ, Seibela J, Laudenbacha U, Fritzemeierb KH, Diela P (2007) The bone-protective effect of the phytoestrogen genistein is mediated via ERá-dependent mechanisms and strongly enhanced by physical activity. Bone (NY) 440:1529–1535

    Google Scholar 

  34. Picherit C, Bennetau-Pelissero C, Chanteranne B, Lebecque P, Davicco MJ, Barlet JP, Coxam V (2001) Soybean isoflavones dose dependently reduce bone turnover but do not reverse established osteopenia in adult ovariectomized rats. J Nutr 131: 723–728

    PubMed  CAS  Google Scholar 

  35. Draper CR, Edel MJ, Dick IM, Randall AG, Martin GB, Prince RL (1997) Phytoestrogens reduce bone loss and bone resorption in oophorectomized rats. J Nutr 127:1795–1799

    PubMed  CAS  Google Scholar 

  36. Register TC, Jayo MJ, Anthony MS (2003) Soy phytoestrogens do not prevent bone loss in postmenopausal monkeys. J Clin Endocrinol Metab 88:4362–4370

    Article  PubMed  CAS  Google Scholar 

  37. Lees CJ, Ginn TA (1998) Soy protein isolate does not prevent increased cortical bone turnover in ovariectomized macaques. Calcif Tissue Int 62:557–558

    Article  PubMed  CAS  Google Scholar 

  38. Marini H, Minutoli L, Polito F, Bitto A, Altavilla D, Atteritano M, Gaudio A, Mazzaferro S, Frisina A, Frisina N, Lubrano C, Bonaiuto M, D’Anna R, Cannata ML, Corrado F, Adamo EB, Wilson S, Squadrito F (2007) Effects of the phytoestrogen genistein on bone metabolism in osteopenic postmenopausal women: a randomized trial. Ann Intern Med 146:839–847

    PubMed  Google Scholar 

  39. Mei J, Yeung SSC, Kung AWC (2001) High dietary phytoestrogen intake is associated with higher bone mineral density in postmenopausal but not premenopausal women. J Clin Endocrinol Metab 86:5217–5221

    Article  PubMed  CAS  Google Scholar 

  40. Wang ZL, Sun JY, Wang DN, Xie YH, Wang SW, Zhao WM (2006) Pharmacological studies of the large-scaled purified genistein from Huaijiao (Sophora japonica-Leguminosae) on antiosteoporosis. Phytomedicine 13:718–723

    Article  PubMed  CAS  Google Scholar 

  41. Weaver CM, Cheong JMK (2005) Soy isoflavone and bone health: the relationship is still unclear. J Nutr 135:1243–1247

    PubMed  CAS  Google Scholar 

  42. Hao YJ, Tang Y, Chen FB, Pei FX (2005) Different doses of nitric oxide donor prevent osteoporosis in ovariectomized rats. Clin Orthop Relat Res 435:226–231

    Article  PubMed  Google Scholar 

  43. Kawane T, Terashima S, Kurahashi I, Yanagawa T, Yoshida H, Horiuchi N (2004) Atorvastatin enhances bone density in ovariectomized rats given 17beta-estradiol or human parathyroid hormone(1-34). Endocrine 24:121–129

    Article  PubMed  CAS  Google Scholar 

  44. Hernandez CJ, Majeska RJ, Schaffler MB (2004) Osteocyte density in woven bone. Bone (NY) 35:1095–1099

    CAS  Google Scholar 

  45. Ireland DC, Bord S, Beavan SR, Compston GE (2002) Effects of estrogen on collagen synthesis by cultured human osteoblasts depend on the rate of cellular differentiation. J Cell Biochem 86:251–257

    Article  PubMed  CAS  Google Scholar 

  46. Zaman G, Jessop HL, Muzylak M, De Souza RL, Pitsillides AA, Price JS, Lanyon LL (2006) Osteocytes use estrogen receptor á to respond to strain but their ERá content is regulated by estrogen. J Bone Miner Res 21:1297–1306

    Article  PubMed  CAS  Google Scholar 

  47. Tomkinson A, Gevers EF, Wit JM, Reeve J, Noble BS (1998) The role of estrogen in the control of rat osteocyte apoptosis. J Bone Miner Res 13:1243–1250

    Article  PubMed  CAS  Google Scholar 

  48. Ren P, Ji H, Sao Q, Chen X, Han J, Sun Y (2007) Protective effects of sodium daidzein sulfonate on trabecular bone in ovariectomized rats. Pharmacology 79:129–136

    Article  PubMed  CAS  Google Scholar 

  49. Boyce RW, Ebert DC, Youngs TA, Paddock CL, Mosekilde L, Stevens ML, Gundersen HJ (1995) Unbiased estimation of vertebral trabecular connectivity in calcium-restricted ovariectomized mini-pigs. Bone (NY) 16:637–642

    CAS  Google Scholar 

  50. Waarsing JH, Day JS, van der Linden JC, Ederveen AG, Spanjers C, De Clerck N, Sasov A, Verhaar JA, Weinans H (2004) Detecting and tracking local changes in the tibiae of individual rats: a novel method to analyse longitudinal in vivo micro-CT data. Bone (NY) 34:163–169

    CAS  Google Scholar 

  51. Chen P, Jerome CP, Burr DB, Turner CH, Ma YL, Rana A, Sato M (2007) Interrelationships between bone microarchitecture and strength in ovariectomized monkeys treated with teriparatide. J Bone Miner Res 22:841–848

    Article  PubMed  CAS  Google Scholar 

  52. Ulrich D, van Rietbergen B, Laib A, Ruegsegger P (1999) The ability of three dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone (NY) 25:55–60

    CAS  Google Scholar 

  53. Muller R, Hannan M, Smith SY, Bauss F (2004) Intermittent ibandronate preserves bone quality and bone strength in the lumbar spine after 16 months of treatment in the ovariectomized cynomolgus monkey. J Bone Miner Res 19:1787–1796

    Article  PubMed  CAS  Google Scholar 

  54. Lane NE, Kumer JL, Majumdar S, Khan M, Lotz J, Stevens RE, Klein R, Phelps KV (2002) The effects of synthetic conjugated estrogens, a (cenestin) on trabecular bone structure and strength in the ovariectomized rat model. Osteoporos Int 13: 816–823

    Article  PubMed  CAS  Google Scholar 

  55. Allen MR, Hogan HA, Hobbs WA, Koivuniemi AS, Koivuniemi MC, Burr DB (2007) Raloxifene enhances material-level mechanical properties of femoral cortical and trabecular bone. Endocrinology 148:3908–3913

    Article  PubMed  CAS  Google Scholar 

  56. Tromp AM, Bravenboer N, Tanck E, Oostlander A, Holzmann PJ, Kostense PJ, Roos JC, Burger EH, Huiskes R, Lips P (2006) Additional weight bearing during exercise and estrogen in the rat: the effect on bone mass, turnover, and structure. Calcif Tissue Int 79:404–415

    Article  PubMed  CAS  Google Scholar 

  57. Ma YL, Bryant HU, Zeng Q, Schmidt A, Hoover J, Cole HW, Yao W, Jee WS, Sato M (2003) New bone formation with teriparatide [human parathyroid hormone-(1–34)] is not retarded by long-term pretreatment with alendronate, estrogen, or raloxifene in ovariectomized rats. Endocrinology 144:2008–2015

    Article  PubMed  CAS  Google Scholar 

  58. Qiu S, Rao DS, Palnitrar S, Parfitt AM (2003) Reduced iliac cancellous osteocyte density in patients with osteoporotic vertebral fracture. J Bone Miner Res 18:1657–1663

    Article  PubMed  Google Scholar 

  59. Parfitt AM, Villanueva AR, Foldes J, Rao DS (1995) Relations between histologic indices of bone formation: implications for the pathogenesis of spinal osteoporosis. J Bone Miner Res 10:466–473

    Article  PubMed  CAS  Google Scholar 

  60. Taylor D (1997) Bone maintenance and remodeling: a control system based on fatigue damage. J Orthop Res 15:601–606

    Article  PubMed  CAS  Google Scholar 

  61. O’Brien CA, Jia D, Plotkin LI (2004) Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 145:1835–1841

    Article  PubMed  CAS  Google Scholar 

  62. Schaffler MB, Majeska RJ (2005) Role of the osteocyte in mechanotransduction and skeletal fragility. In: Proceedings of the NIAMS-ASBMR scientific meeting: Bone quality: what is it and can we measure it? Bethesda, MD, May 2–3 (abstract)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eryuan Liao.

About this article

Cite this article

Dai, R., Ma, Y., Sheng, Z. et al. Effects of genistein on vertebral trabecular bone microstructure, bone mineral density, microcracks, osteocyte density, and bone strength in ovariectomized rats. J Bone Miner Metab 26, 342–349 (2008). https://doi.org/10.1007/s00774-007-0830-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-007-0830-4

Key words

Navigation