Skip to main content
Log in

Immobilized papain on gold nanorods as heterogeneous biocatalysts

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Papain, a thiol protease present in the latex of Carica papaya, is an enzyme which exhibits broad proteolytic activity, and, for this reason, it is utilized in a variety of industrial applications. Immobilization of papain on gold nanoparticles highly preserves its activity and enhances the stability, allowing the reuse of the linked enzyme many times without any significant loss of its catalytic performance. In particular, k cat and K M values remain substantially unchanged, while immobilized form shows a higher activity on a wider pH range retains 80 % residual activity also at 90 °C and shows higher functionality than the free form when incubated for long time (1 h) at 90 °C and at extreme pH values (3 and 12). A higher activity of immobilized papain with respect to the free form in the presence of various bivalent metal ions, known as strong inhibitors of papain, was also found. The reasons of this enhanced stability of gold nanorods immobilized papain are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afaq S, Iqbal J (2001) Immobilization and stabilization of papain on chelating sepharose: a metal chelate regenerable carrier. Electr J Biotech 4:120–124

    Google Scholar 

  • Agostinelli E, Belli F, Tempera G, Mura A, Floris G, Toniolo L, Vavasori A, Fabris S, Momo F, Stevanato R (2007) Polyketone polymer: a new support for direct enzyme immobilization. J Biotechnol 127:670–678

    Article  CAS  PubMed  Google Scholar 

  • Alkilany AM et al (2012) Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev 64:190–199

    Article  CAS  PubMed  Google Scholar 

  • Arnon R (1970) Papain. Meth Enzymol 19:226–242

    Article  Google Scholar 

  • Bayramoglu G et al (2010) Reversible immobilization of glucose oxidase on polyaniline grafted polyacrylonitrile conductive composite membrane. Bioresour Technol 101:6881–6887

    Article  CAS  PubMed  Google Scholar 

  • Billsten P et al (1999) Conformation of human carbonic anhydrase II variants adsorbed to silica nanoparticles. Langmuir 15:6395–6399

    Article  CAS  Google Scholar 

  • Blanco RM, Guisan JM (1992) Additional stabilisation of PGA-agarose derivatives by chemical modification with aldehydes. Enzyme Microb Technol 14:489–495

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cetinus SA, Oztop HN (2003) Immobilization of catalase into chemically crosslinked chitosan beads. Enzyme Microb Technol 32:889–894

    Article  Google Scholar 

  • Chakraborti S et al (2010) Structure and activity of lysozyme on binding to ZnO nanoparticles. Langmuir 26:3506–3513

    Article  CAS  PubMed  Google Scholar 

  • Chen CC et al (2006) DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J Am Chem Soc 128:3709–3715

    Article  CAS  PubMed  Google Scholar 

  • Choma J et al (2012) Synthesis of rod-like silica—gold core-shell structures. Colloids Surf A 393:37–41

    Article  CAS  Google Scholar 

  • Delanoy G, Li Q, Yu J (2005) Activity and stability of laccase in conjugation with chitosan. Int J Biol Macromol 35:89–95

    Article  CAS  PubMed  Google Scholar 

  • Dickerson EB et al (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269:57–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrovska K et al (2008) Encapsulation of glucose oxidase within poly (ethylene glycol) methyl ether methacrylate microparticles for developing an amperometric glucose biosensor. Int J Biol Macromol 43:339–345

    Article  CAS  PubMed  Google Scholar 

  • Gaoa F et al (2012) Effect of surface oxide on the melting behavior of lead-free solder nanowires and nanorods. Appl Surf Sci 258:7507–7514

    Article  Google Scholar 

  • Gole A, Murphy CJ (2004) Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed. Chem Mater 16:3633–3640

    Article  CAS  Google Scholar 

  • Gole A, Murphy CJ (2005) Polyelectrolyte-coated gold nanorods: synthesis, characterization and immobilization. Chem Mater 17:1325–1330

    Article  CAS  Google Scholar 

  • Hauck TS et al (2008) Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia. Adv Mater 20:3832–3838

    Article  CAS  Google Scholar 

  • He W et al (2008) Two-photon luminescence imaging of bacillus spores using peptide-functionalized gold nanorods. Nano Res 1:450–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinterwirth H et al (2012) Bioconjugation of trypsin onto gold nanoparticles: effect of surface chemistry on bioactivity. Anal Chim Acta 733:90–97

    Article  CAS  PubMed  Google Scholar 

  • Hipwell MC, Harvey MJ, Dean PDG (1974) Affinity chromatography on a homologous series of immobilized N6-amega-aminoalkyl AMP. Effect of ligand–matrix spacer length on ligand–enzyme interaction. FEBS Lett 42:355–359

    Article  CAS  PubMed  Google Scholar 

  • Homaei AA et al (2010) Cysteine enhances activity and stability of immobilized papain. Amino Acids 38:937–942

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910

    Article  CAS  Google Scholar 

  • Illanes CO et al (2013) Evidence of structural changes of an enzymatic extract entrapped into alginate beads. Biochem Eng J 70:23–28

    Article  CAS  Google Scholar 

  • Jiang DS et al (2005) Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres. Biochem Eng J 25:15–23

    Article  Google Scholar 

  • Jiangwu Y et al (2013) The effect of various concentrations of papain on the properties and hydrolytic rates of β-casein layers l. Colloids Surf B 101:272–279

    Article  Google Scholar 

  • Kembhavi AA, Kulkarni A, Pant A (1993) Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM no.64. Appl Biochem Biotechnol 38:83–92

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Grate JW, Wan Pg (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61:1017–1026

    Article  CAS  Google Scholar 

  • Kotal M (2011) Fabrication of gold nanoparticle assembled polyurethane microsphere template in trypsin immobilization. J Nanosci Nanotechnol 11:10149–10157

    Article  CAS  PubMed  Google Scholar 

  • Larsericsdotter H, Oscarsson S, Buijs J (2001) Thermodynamic analysis of proteins adsorbed on silica particles: electrostatic effects. J Colloid Interface Sci 237:98–103

    Article  CAS  PubMed  Google Scholar 

  • Leia H et al (2004) The preparation and catalytically active characterization of papain immobilized on magnetic composite microspheres. Enzyme Microb Technol 35:15–21

    Article  Google Scholar 

  • Li Z et al (2009) RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photo-thermal therapy. Mol Pharm 7:94–104

    Article  Google Scholar 

  • Lv M et al (2009) Trypsin-gold nanoparticle conjugates: binding, enzymatic activity, and stability. Prep Biochem Biotechnol 39:429–438

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud KA et al (2013) Preparation of well-dispersed gold/magnetite nanoparticles embedded on cellulose nanocrystals for efficient immobilization of papain enzyme. Appl Mater Interfaces 5:4978–4985

    Article  CAS  Google Scholar 

  • McKenzie F (2009) Quantitation of biomolecules conjugated to nanoparticles by enzyme hydrolysis. Chem Commun (Camb) 28:2872–2874

    Article  Google Scholar 

  • Mohamed MB et al (1998) Thermal reshaping of gold nanorods in micelles. J Phys Chem B 102:9370–9374

    Article  CAS  Google Scholar 

  • Nikoobakht B, El-sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  • Nitsawang S, Hatti-Kaul R, Kanasawud P (2006) Purification of papain from Carica papaya latex: aqueous two-phase extraction versus two-step salt precipitation. Enzyme Microb Technol 39:1103–1107

    Article  CAS  Google Scholar 

  • Pissuwan D, Valenzuela SM, Cortie MB (2008) Prospects for gold nanorod particles in diagnostic and therapeutic applications. Genet Eng Rev 25:93–112

    Article  CAS  Google Scholar 

  • Pissuwan D, Niidome T, Cortie MB (2011) The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release 149:65–71

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishna Nayak B, Mallikarjuna Rao N, Pattabiraman (1979) Studies on plant gums. proteases in neem (Azadirachta indica) gum. J Biosci 1:393–400

    Article  Google Scholar 

  • Rao RS et al (2006) Enzymatic activities of proteases immobilized on tri (4-formyl phenoxy) cyanurate. Enzyme Microb Technol 39:958–962

    Article  CAS  Google Scholar 

  • Reshmi R, Sanjay G, Sugunan S (2006) Enhanced activity and stability of a-amylase immobilized on alumina. Catal Commun 7:460–465

    Article  CAS  Google Scholar 

  • Roach P, Farrar D, Perry CC (2005) Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. J Am Chem Soc 127:8168–8173

    Article  CAS  PubMed  Google Scholar 

  • Rocha JMS, Gil MH, Garcia FAP (1998) Effects of additives on the activity of a covalently immobilized lipase in organic media. J Biotechnol 66:61–67

    Article  CAS  Google Scholar 

  • Sahoo B et al (2013) A novel approach for efficient immobilization and stabilization of papain on magnetic gold nanocomposites. Colloids Surf B 101:280–289

    Article  CAS  Google Scholar 

  • Salas PT et al (2011) Immobilized biocatalysts: novel approaches and tools for binding enzymes to supports. Adv Mater 23:5275–5282

    Article  Google Scholar 

  • Sangeetha K, Abraham TE (2006) Chemical modification of papain for use in alkaline medium. J Mol Catal B Enzym 38:171–177

    Article  CAS  Google Scholar 

  • Sau et al (2004) Newly synthesized water soluble cholinium-purpurin photosensitizers and their stabilized gold nanoparticles as promising anticancer agents. Langmuir 20:6414–6420

    Article  CAS  PubMed  Google Scholar 

  • Sluyterman LA (1967) The activation reaction of papain. Biochim Biophys Acta 139:430–438

    Article  CAS  PubMed  Google Scholar 

  • Stevanato et al (1989) Characterization of free and immobilized amine oxidases. Biotech Appl Biochem 11:266–272

    CAS  Google Scholar 

  • Takahashi H, Niidome Y, Yamada S (2005) Controlled release of plasmid DNA from gold nanorods induced by pulsed near-infrared light. Chem. Commun 7(17):2247–2249

    Article  Google Scholar 

  • Talbert JN, Goddard JM (2012) Enzymes on material surfaces. Colloids Surf B 93:8–19

    Article  CAS  Google Scholar 

  • Van Hekken DL, Strange ED, Lu DP (1996) Functional properties of chemically phosphorylated whole casein. J Dairy Sci 79:1049–1942

    Google Scholar 

  • Wilchek M, Miron T (2003) Oriented versus random protein immobilization. J Biochem Biophys Methods 55:67–70

    Article  CAS  PubMed  Google Scholar 

  • Wu C et al (2011) Size-modulated catalytic activity of enzyme nanoparticle conjugates: a combined kinetic and theoretical study. Chem Commun 47:7446–7448

    Article  CAS  Google Scholar 

  • Yu C, Irudayaraj J (2007) Multiplex biosensor using gold nanorods. Anal Chem 79:572–579

    Article  CAS  PubMed  Google Scholar 

  • Zou R et al (2010) Thermal stability of gold nanorods in an aqueous solution. Colloid Surf A 372:177–181

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the University of Hormozgan for the financial support to this research.

Conflict of interest

This work is free from any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmad Homaei or Roberto Stevanato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Homaei, A., Barkheh, H., Sariri, R. et al. Immobilized papain on gold nanorods as heterogeneous biocatalysts. Amino Acids 46, 1649–1657 (2014). https://doi.org/10.1007/s00726-014-1724-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1724-0

Keywords

Navigation