Skip to main content
Log in

Pea Gβ subunit of G proteins has a role in nitric oxide-induced stomatal closure in response to heat and drought stress

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Heterotrimeric G proteins consisting of Gα, Gβ and Gγ subunits act as downstream effectors to regulate multiple functions including abiotic stress tolerance. However, the mechanism of Gβ-mediated heat and drought tolerance is yet to be established. To explore the role of Pisum sativum Gβ subunit (PsGβ) in heat and drought stress, transgenic tobacco plants overexpressing (OEs) PsGβ were raised. Transgenic plants showing ectopic expression of PsGβ performed better under heat and drought stress in comparison with vector control plants. The seed germination, relative water content (RWC) and nitric oxide (NO) induction in the guard cells of transgenic plants were significantly higher in contrast to control plants. PsGβ promoter was isolated and several stress-responsive elements were identified. The change in Gβ expression in response to heat, methyl jasmonate (MeJA), abscisic acid (ABA), drought and salt confirms the presence of heat, low temperature and drought-responsive elements in the PsGβ promoter. Also, heat and drought stress caused the release of NO-induced stomatal closure in the leaves of transgenic tobacco plants OEs PsGβ. The better performance of transgenic plant OEs PsGβ is also attributed to the improved photosynthetic parameters as compared with control plants. These findings suggest a role of PsGβ in the signalling pathway leading to NO-induced stomatal closure during heat and drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alvarez S, Hicks LM, Pandey S (2011) ABA-dependent and-independent G-protein signaling in Arabidopsis roots revealed through an iTRAQ proteomics approach. J Prot Res 10:3107–3122

    Article  CAS  Google Scholar 

  • Anderson DJ, Botella JR (2007) Expression analysis and subcellular localization of the Arabidopsis thaliana G-protein beta-subunit AGB1. Plant Cell Rep 26:1469–1480

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj D, Sheikh AH, Sinha AK, Tuteja N (2011) Stress induced β subunit of heterotrimeric G-proteins from Pisum sativum interacts with mitogen activated protein kinase. Plant Signal Behav 6:287–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhardwaj D, Lakhanpaul S, Tuteja N (2012) Wide range of interacting partners of pea Gβ subunit of G-proteins suggests its multiple functions in cell signalling. Plant Physiol Biochem 58:1–5

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee S, Saha AK (2014) Plant water-stress response mechanisms. In: Approaches to plant stress and their management. Springer, New Delhi, pp 149–172

    Chapter  Google Scholar 

  • Biswal AK, Mcconnell EW, Werth EG, Lo SF, Yu SM, Hicks L, Jones AM (2019) The nucleotide-dependent interactome of rice heterotrimeric G protein α subunit. Proteomics. 13:1800385

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty N, Kanyuka K, Jaiswal DK, Kumar A, Arora V, Malik A, Gupta N, Hooley R, Raghuram N (2019) GCR1 and GPA1 coupling regulates nitrate, cell wall, immunity and light responses in Arabidopsis. Sci Rep 9:5838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chakravorty D, Trusov Y, Zhang W, Acharya BR, Sheahan MB, McCurdy DW, Assmann SM, Botella JR (2011) An atypical heterotrimeric G-protein γ-subunit is involved in guard cell K+-channel regulation and morphological development in Arabidopsis thaliana. Plant J 67:840–851

    Article  CAS  PubMed  Google Scholar 

  • Chakravorty D, Yu Y, Assmann SM (2018) A kinase-dead version of FERONIA receptor-like kinase has dose dependent impacts on rosette morphology and RALF 1-mediated stomatal movements. FEBS Lett 592:3429–3437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16:1143–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhury S, Riesselman AJ, Pandey S (2014) Constitutive or seed-specific overexpression of Arabidopsis G-protein γ subunit 3 (AGG3) results in increased seed and oil production and improved stress tolerance in Camelina sativa. Plant Biotechnol J 12:49–59

    Article  CAS  Google Scholar 

  • Choudhury SR, Marlin MA, Pandey S (2019) The role of Gβ protein in controlling cell expansion via potential interaction with lipid metabolic pathways. Plant Physiol 179:1159–1175

    Article  CAS  Google Scholar 

  • Clarke SM, Cristescu SM, Miersch O, Harren FJ, Wasternack C, Mur LA (2009) Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol 182:175–187

    Article  CAS  PubMed  Google Scholar 

  • Duan Q, Kita D, Li C, Cheung AY, Wu HM (2010) FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc Natl Acad Sci U S A 107:17821–17826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan Q, Kita D, Johnson EA, Aggarwal M, Gates L, Wu HM, Cheung AY (2014) Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat Commun 5:3129

    Article  PubMed  CAS  Google Scholar 

  • Easlon HM, Carlisle E, McKay JK, Bloom AJ (2015) Does low stomatal conductance or photosynthetic capacity enhance growth at elevated CO2 in Arabidopsis? Plant Physiol 167:793–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan LM, Zhang W, Chen JG, Taylor JP, Jones AM, Assmann SM (2008) Abscisic acid regulation of guard-cell K+ and anion channels in G-beta and RGS-deficient Arabidopsis lines. Proc Natl Acad Sci U S A 105:8476–8481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrero-Serrano Á, Assmann SM (2016) The α-subunit of the rice heterotrimeric G protein, RGA1, regulates drought tolerance during the vegetative phase in the dwarf rice mutant d1. J Ex Bot 67:3433–3343

    Article  CAS  Google Scholar 

  • Friedman EJ, Temple BR, Hicks SN, Sondek J, Jones CD, Jones AM (2009) Prediction of protein-protein interfaces on G-protein β subunits reveals a novel phospholipase C β2 binding domain. J Mol Biol 392:1044–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Li T, Liu Y, Ren C, Zhao Y, Wang M (2010) Isolation and characterization of gene encoding G protein α subunit protein responsive to plant hormones and abiotic stresses in Brassica napus. Mol Bio Rep 37:3957–3965

    Article  CAS  Google Scholar 

  • Gayatri G, Agurla S, Kuchitsu K, Anil K, Podile AR, Raghavendra AS (2017) Stomatal closure and rise in ROS/NO of Arabidopsis guard cells by tobacco microbial elicitors: cryptogein and harpin. Front Plant Sci 8:1096

    Article  PubMed  PubMed Central  Google Scholar 

  • Ge XM, Cai HL, Lei X, Zhou X, Yue M, He JM (2015) Heterotrimeric G protein mediates ethylene-induced stomatal closure via hydrogen peroxide synthesis in Arabidopsis. Plant J 82:138–150

    Article  CAS  PubMed  Google Scholar 

  • Gong M, Li YJ, Chen SZ (1998) Abscisic acid-induced thermotolerance in maize seedling is mediated by calcium and associated with antioxidant system. J Plant Physiol 153:488–496

    Article  CAS  Google Scholar 

  • He JM, Ma XG, Zhang Y, Sun TF, Xu FF, Chen YP, Liu X, Yue M (2013) Role and interrelationship of Gα protein, hydrogen peroxide and nitric oxide in ultraviolet B-induced stomatal closure in Arabidopsis leaves. Plant Physiol 161:1570–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon BW, Acharya BR, Assmann SM (2019) The Arabidopsis heterotrimeric G protein β subunit, AGB 1, is required for guard cell calcium sensing and calcium induced calcium release. Plant J 99:231–244

    Article  CAS  PubMed  Google Scholar 

  • Klopffleisch et al (2011) Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis. Mol Syst Biol 7:1–7

    Article  Google Scholar 

  • Konigshofer H, Tromballa HW, Loppert HG (2008) Early events in signalling high-temperature stress in tobacco BY2 cells involve alterations in membrane fluidity and enhanced hydrogen peroxide production. Plant Cell Environ 31:1771–1780

    Article  CAS  PubMed  Google Scholar 

  • Ku YS, Sintaha M, Cheung MY, Lam HM (2018) Plant hormone signaling crosstalks between biotic and abiotic stress responses. Int J Mol Sci 19:3206

    Article  PubMed Central  CAS  Google Scholar 

  • Lease KA, Wen J, Li J, Doke JT, Liscum E, Walker JC (2001) A mutant Arabidopsis heterotrimeric G-protein β subunit affects leaf, flower, and fruit development. The Plant Cell 13:2631–2641

  • Leopold AC, Sun WQ, Bernal-Lugo I (1994) The glassy state in seeds: analysis and function. Seed Sci Res 4:267–274

    Article  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JH, Liu YQ, Lü P, Lin HF, Bai Y, Wang XC, Chen YL (2009) A signalling pathway linking nitric oxide production to heterotrimeric G protein and hydrogen peroxide regulates extracellular calmodulin induction of stomatal closure in Arabidopsis. Plant Physiol 150:114–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Liu Y, Zheng L, Chen L, Li N, Corke F, Lu Y, Fu X, Zhu Z, Bevan MW, Li Y (2012) The plant-specific G protein γ subunit AGG3 influences organ size and shape in Arabidopsis thaliana. New Phytol 194:690–703

    Article  CAS  PubMed  Google Scholar 

  • Li C, Yeh FL, Cheung AY, Duan Q, Kita D, Liu MC, Maman J, Luu EJ, Wu BW, Gates L, Jalal M (2015) Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. E life 4:e06587

    PubMed Central  Google Scholar 

  • Liu HT, Liu YY, Pan QH, Yang HR, Zhan JC, Huang WD (2006) Novel interrelationship between salicylic acid, abscisic acid, and PIP2-specific phospholipase C in heat acclimation-induced thermotolerance in pea leaves. J Exp Bot 57:3337–3347

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Li Y, Xu L, Chen Z, He N (2019) Variation in leaf morphological, stomatal, and anatomical traits and their relationships in temperate and subtropical forests. Scientific Reports 9 (1)

  • Martin StPaul N, Delzon S, Cochard H (2017) Plant resistance to drought depends on timely stomatal closure. Ecol Lett 20:1437–1447

    Article  PubMed  Google Scholar 

  • Maruta N, Trusov Y, Brenyah E, Parekh U, Botella JR (2015) Membrane-localized extra large G-proteins and Gβγ of the heterotrimeric G proteins form functional complexes engaged in plant immunity in Arabidopsis. Plant Physiol 167:1004–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misra S, Wu Y, Venkataraman G, Sopory S, Tuteja N (2007) Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum): role in salinity and heat stress and cross-talk with phospholipase C. Plant J 52:656–669

    Article  CAS  Google Scholar 

  • Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, Toyooka K, Matsuoka K, Jinbo T, Kimura T (2007) Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng 104:34–41

    Article  CAS  PubMed  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  CAS  PubMed  Google Scholar 

  • Nilson SE, Assmann SM (2010) Heterotrimeric G proteins regulate reproductive trait plasticity in response to water availability. New Phytol 185:734–746

    Article  CAS  PubMed  Google Scholar 

  • Pandey S (2019) Heterotrimeric G-protein signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 70:213–238

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Assmann SM (2004) The Arabidopsis putative G-protein-coupled receptor GCR1 interacts with the G-protein α subunit GPA1 and regulates abscisic acid signalling. Plant Cell 16:1616–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey S, Chen JG, Jones AM, Assmann SM (2006) G-protein complex mutants are hypersensitive to abscisic acid regulation of germination and post germination development. Plant Physiol 141:243–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perdomo JA, Carmo-Silva E, Hermida-Carrera C, Flexas J, Galmés J (2016) Acclimation of biochemical and diffusive components of photosynthesis in rice, wheat, and maize to heat and water deficit: implications for modeling photosynthesis. Front Plant Sci 7:1719

    Article  PubMed  PubMed Central  Google Scholar 

  • Peškan T, Oelmüller R (2000) Heterotrimeric G-protein β-subunit is localized in the plasma membrane and nuclei of tobacco leaves. Plant Mol Biol 42:915–922

    Article  PubMed  Google Scholar 

  • Saito N, Nakamura Y, Mori IC, Murata Y (2009) Nitric oxide functions in both methyl jasmonate signaling and abscisic acid signaling in Arabidopsis guard cells. Plant Signal Behav 4:119–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanmartin M, Drogoudi PD, Lyons T, Pateraki I, Barnes J, Kanellis AK (2003) Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta 216:918–928

    Article  CAS  PubMed  Google Scholar 

  • Thung L, Chakravorty D, Trusov Y, Jones AM, Botella JR (2013) Signaling specificity provided by the Arabidopsis thaliana heterotrimeric G-protein γ subunits AGG1 and AGG2 is partially but not exclusively provided through transcriptional regulation. PLoS One 8:e58503

  • Toh S, Imamura A, Watanabe A, Nakabayashi K, Okamoto M, Jikumaru Y, Hanada A, Aso Y, Ishiyama K, Tamura N, Iuchi S, Kobayashi M, Yamaguchi S, Kamiya Y, Nambara E, Kawakami N (2008) High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol 146:1368–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trusov Y, Rookes JE, Tilbrook K, Chakravorty D, Mason MG, Anderson D, Chen JG, Jones AM, Botella JR (2007) Heterotrimeric G protein gamma subunits provide functional selectivity in Gbetagamma dimer signaling in Arabidopsis. Plant Cell 19:1235–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trusov Y, Sewelam N, Rookes JE, Kunkel M, Nowak E, Schenk PM, Botella JR (2009) Heterotrimeric G-proteins-mediated resistance to necrotrophic pathogens includes mechanisms independent of salicylic acid-, jasmonic acid/ethylene- and abscisic acid-mediated defense signalling. Plant J 58:69–81

    Article  CAS  PubMed  Google Scholar 

  • Tunc-Ozdemir M, Liao KL, Ross-Elliott TJ, Elston TC, Jones AM (2018) Long-distance communication in Arabidopsis involving a self-activating G protein. Plant Direct 2:e00037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tuteja N, Sopory SK (2008) Chemical signalling under abiotic stress environment in plants. Plant Signal Behav 8:525–536

    Article  Google Scholar 

  • Ullah H, Chen JG, Wang S, Jones AM (2002) Role of a heterotrimeric G-protein in regulation of Arabidopsis seed germination. Plant Physiol 129:897–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urano D, Jones AM (2013) Round up the usual suspects: a comment on non-existent plant G protein-coupled receptors. Plant Physiol 161:1097–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urano D, Jones AM (2014) Heterotrimeric G protein-coupled signaling in plants. Annu Rev Plant Biol 65:365–384

    Article  CAS  PubMed  Google Scholar 

  • Urano D, Jones JC, Wang H, Matthews M, Bradford W, Bennetzen JL, Jones AM (2012) G protein activation without a GEF in the plant kingdom. PLoS Genet 8:e1002756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XQ, Ullah H, Jones AM, Assmann SM (2001) G-protein regulation of ion channels and abscisic acid signalling in Arabidopsis guard cells. Sci 292:2070–2072

    Article  CAS  Google Scholar 

  • Wang WH, Yi XQ, Han AD, Liu TW, Chen J, Wu FH, Dong XJ, He JX, Pei ZM, Zheng HL (2011) Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis. J Exp Bot 63:177–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Mao Y, Lai D, Zhang W, Zheng T, Shen W (2013) Roles of NIA/NR/NOA1 dependent nitric oxide production and HY1 expression in the modulation of Arabidopsis salt tolerance. J Exp Bot 64:3045–3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Zhou G (2008) Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J Exp Bot 59:3317–3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu DB, Chen M, Ma YN, Xu ZS, Li LC, Chen YF, Ma YZ (2015) A G-protein β subunit, AGB1, negatively regulates the ABA response and drought tolerance by down-regulating AtMPK6-related pathway in Arabidopsis. PLoS One 10:e0116385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yadav DK, Shukla D, Tuteja N (2013) Rice heterotrimeric G-protein alpha subunit (RGA1): in silico analysis of the gene and promoter and its upregulation under abiotic stress. Plant Physiol Biochem 63:262–271

    Article  CAS  PubMed  Google Scholar 

  • Yadav DK, Shukla D, Tuteja N (2014) Isolation, in silico characterization, localization and expression analysis of abiotic stress-responsive rice G-protein β subunit (RGB1). Plant Signal Behav 9:e28890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang W, Zhang W, Wang X (2017) Post-translational control of ABA signalling: the roles of protein phosphorylation and ubiquitination. Plant Biotechnol J 15:4–14

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Assmann SM (2015) The heterotrimeric G-protein β subunit, AGB1, plays multiple roles in the Arabidopsis salinity response. Plant Cell Environ 38:2143–2156

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Chakravorty D, Assmann SM (2018) The G protein β-subunit, AGB1, interacts with FERONIA in RALF1-regulated stomatal movement. Plant Physiol 176:2426–2440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Hu G, Cheng Y, Huang J (2008) Heterotrimeric G protein α and β subunits antagonistically modulate stomatal density in Arabidopsis thaliana. Dev Biol 324:68–75

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Wang M, Wang W, Li D, Huang Q, Wang Y, Zheng X, Zhang Z (2012) Silencing of G proteins uncovers diversified plant responses when challenged by three elicitors in Nicotiana benthamiana. Plant Cell Environ 35:72–85

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Stanley BA, Zhang W, Assmann SM (2010) ABA-regulated G-protein signalling in Arabidopsis guard cells: a proteomic perspective. J Proteome Res 9:1637–1647

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

DB is thankful to the UGC for providing research fellowship. DB is grateful to Purnima Kumar and Amit Verma for their help and support during the experiments and writing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Tuteja.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Handling Editor: Néstor Carrillo

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlight

Pisum sativum G-beta subunit of G proteins has been shown here to confer heat and drought stress tolerance in transgenic tobacco by regulating nitric oxide-induced stomatal movements.

Electronic supplementary material

ESM 1

Prediction of distribution of Gβ subunit of G proteins through PlantLoc software- A- Probability percentage of PsGβ; B-Probability Percentage of Arabidopsis AGB1. Chloroplast (CHL), cell wall (CEL), cytoplasm (CYT), endoplasmic reticulum (END), extracellular space (EXC), Golgi apparatus (GOL), mitochondrion (MIT), nucleus (NUC), peroxisome (PER), plasma membrane (PLA), and vacuole (VAC). (DOCX 217 kb)

ESM 2

Primer sequences used in the experiments. (DOCX 11 kb)

ESM 3

Cis-elements identified from the Gβ subunit of various plants using plantCARE software. Y represent YES and (−) represent “Not Found”. (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, D., Sahoo, R.K., Naqvi, A.R. et al. Pea Gβ subunit of G proteins has a role in nitric oxide-induced stomatal closure in response to heat and drought stress. Protoplasma 257, 1639–1654 (2020). https://doi.org/10.1007/s00709-020-01529-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-020-01529-6

Keywords

Navigation