Skip to main content
Log in

Aminooxyacetic acid (АОА), inhibitor of 1-aminocyclopropane-1-carboxilic acid (AСС) synthesis, suppresses self-incompatibility-induced programmed cell death in self-incompatible Petunia hybrida L. pollen tubes

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Self-incompatibility (SI) is genetically determined reproductive barrier preventing inbreeding and thereby providing the maintenance of plant species diversity. At present, active studies of molecular bases of SI mechanisms are underway. S-RNAse-based SI in Petunia hybrida L. is a self-/non-self recognition system that allows the pistil to reject self pollen and to accept non-self pollen for outcrossing. In the present work, using fluorescent methods including the TUNEL method allowed us to reveal the presence of markers of programmed cell death (PCD), such as DNA fragmentation, in growing in vivo petunia pollen tubes during the passage of the SI reaction. The results of statistical analysis reliably proved that PCD is the factor of S-RNAse-based SI. It was found that preliminary treatment before self-pollination of stigmas of petunia self-incompatible line with aminooxyacetic acid (AOA), inhibitor of ACC synthesis, led to stimulation of pollen tubes growth when the latter did not exhibit any hallmarks of PCD. These data argue in favor of assumption that ethylene controls the passage of PCD in incompatible pollen tubes in the course of S-RNAse-based SI functioning. The involvement of the hormonal regulation in SI mechanism in P. hybrida L. is the finding observed by us for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson MA, McFadden GI, Bernatzky R, Atkinson A, Orpin T, Dedman H et al (1989) Sequence variability of three alleles of the self-incompatibility gene of Nicotiana alata. Plant Cell 1:483–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernatsky R. (1986) Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences/R. Bernatsky. S.D. Tanksley // Genetics 112: 887–898

  • Bollhoner B, Prestele J, Tuominen (2012) Xylem cell death: emerging understanding of regulation and function. J Exp Bot 63(3):1081–1094

    Article  PubMed  CAS  Google Scholar 

  • Bosch M, Franklin-Tong V (2007) Temporal and spatial activation of caspase-like enzymes induced by self-incompatibility in Papaver pollen. Proc Natl Acad Sci U S A 104:18327–18332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao FY, DeFalco TA, Moeder W, Li B, Gong Y, Liu XM, Taniguchi M, Lumba S et al (2018) Arabidopsis ETHYLENE RESPONSE FACTOR 8 (ERF8) has dual functions in ABA signaling and immunity. BMC Plant Biol 18(1):211–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai L, Tudor RL, Poulter NS, Wilkins KA, Eaves DJ, Franklin FCH, Franklin-Tong VE (2017) MAP kinase PrMPK9-1 contributes to the self-incompatibility response. Plant Physiol 174(2):1226–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Entani T, Kubo K, Isogai S, Fukao Y, Masahiro M, Isogai A, Takayama S (2014) Ubiquitin–proteasome-mediated degradation of S-RNase in a solanaceous cross-compatibility reaction. Plant J 78:1014–1021

    Article  CAS  PubMed  Google Scholar 

  • Hiratsuka S, Zhang SL, Nakagava E, Kawai Y (2001) Selective inhibition of the growth of incompatible pollen tubes by S-protein in the Japanese pear. Sex Plant Reprod 13:209–215

    Article  CAS  Google Scholar 

  • Holden MJ, Marty JA, Singh-Cundy A (2007) Pollination-induced ethylene promotes the early phase of pollen tube growth in Petunia inflata. J Plant Physiol 160(3):261–269

    Article  Google Scholar 

  • Hua Z, Kao T-h (2008) Identification of major lysine residues of S (3)-RNAse of Petunia inflata involved in ubiquitin-26Sproteasome-mediated degradation in vitro. Plant J 54:1094–1104

    Article  CAS  PubMed  Google Scholar 

  • Hua Z, Meng X, Kao T-H (2007) Comparison of Petunia inflata S-Locus F-box protein (Pi SLF) with Pi SLF-like proteins reveals its unique function in S-RNase-based self- incompatibility. Plant Cell 19:3593–3609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, Khan MIR (2017) Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front Plant Sci 8:475

    PubMed  PubMed Central  Google Scholar 

  • Iwano M, Takayama S (2012) Self/non-self discrimination in angiosperm self-incompatibility. Curr Opin Plant Biol 15:78–83

    Article  PubMed  Google Scholar 

  • Iwano M, Shiba H, Funato M, Shimosato H, Takayama S, Che FS, Kai N, Watanabe M, Suzuki G, Hinata K, Isogai A (2003) The pollen determinant of self-incompatibility in Brassica campestris. Proc Cell Physiol 44:428–436

    Article  CAS  Google Scholar 

  • Kao T-H, Tsukamoto T (2004) The molecular and genetic bases of S-RNase-based self-incompatibility. Plant Cell 16:72–83

    Article  Google Scholar 

  • Kovaleva L, Zakharova E (2003) Hormonal status of the pollen-pistil system at the progamic phase of fertilization after compatible and incompatible pollination in Petunia hybrida L. Sex Plant Reprod 16:191–196

    Article  CAS  Google Scholar 

  • Kovaleva LV, Zakharova EV, Minkina YV, Timofeeva GV, Andreev IM (2005) Gernination and growth in vitro of petunia male gametophyte are sensitive to the action of exogenous hormones and are accompanied by a change in the endogenous level of the plant hormones. Russ J Plant Physiol 52:584–590

    Article  CAS  Google Scholar 

  • Kovaleva LV, Dobrovolskaya A, Voronkov A, Rakitin V (2011) Ethylene is involved in the control of male gametophyte development and germination in Petunia. J Plant Growth Regul 30:64–73

    Article  CAS  Google Scholar 

  • Kovaleva LV, Timofeeva GV, Rodionova GB, Zakharova EV, Rakitin V, Yu (2013) Role of ethylene in the regulation of gametophyte-sporophyte interactions during progamic phase of fertilization in the petunia (Petunia hybrida L). Russ J Dev Biol 44(2):91–100

    Article  CAS  Google Scholar 

  • Kovaleva L, Voronkov A, Zakharova E, Minkina Y, Timofeeva G, Andreev I (2016) Regulation of petunia pollen tube growth by phytohormones: identification of their potential targets. J Agric Sci Technol A6:239–254

    Google Scholar 

  • Kovaleva LV, Zakharova EV, Voronkov AC, Timofeeva GV, Andreev IM (2017) Role of abscisic acid and ethylene in the control of water transport-driving forces in germinating petunia male gametophyte. Russ J Plant Physiol 64(5):782–793

    Article  CAS  Google Scholar 

  • Kovaleva LV, Voronkov AS, Zakharova EV, Andreev IM (2018) ABA and IAA control microsporogenesis in Petunia hybrida L. Protoplasma 255(3):751–759

    Article  CAS  PubMed  Google Scholar 

  • Kubo KI, Entani T, Takara A, Wang N, Fields AM, Hua Z, Toyoda M, Kawashima SI, Ando T, Isogai A, Kao TH, Takayama S (2010) Collaborative non-self recognition system in S-RNase-based self-incompatibility. Science 330:796–799

    Article  CAS  PubMed  Google Scholar 

  • Kubo K, Paape T, Hatakeyama M, Entani T, Takara A, Kajihara K et al (2015) Gene duplication and genetic exchange drive the evolution of S-RNAse-based self-incompatibility in Petunia. Nat Plants 1:1400S

    Article  CAS  Google Scholar 

  • Kubo K, Tsukahara M, Fujii S, Murase K, Wada Y, Entani T, Iwano M, Takayama S (2016) Cullin1-P is an essential component of non-self recognition system in self-incompatibility in Petunia. Plant Cell Physiol 57:2403–2416

    Article  CAS  PubMed  Google Scholar 

  • Kuo J. (2007) Electron microscopy. Methods and protocols. Humana press: 625 S

  • Lai Z, Ma W, Han B, Liang L, Zhang Y, Hong G, Hue Y (2002) An F-box gene linked to the self-incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Mol Biol 50:29–42

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Huang SS, Kao TH (1994) S proteins control rejection of incompatible pollen in Petunia inflata. Nature 367:560–563

    Article  CAS  PubMed  Google Scholar 

  • Li S, Samaj J, Franklin-Tong VE (2007) A mitogen-activated protein kinase signals to programmed cell death induced by self-incompatibility in Papaver pollen. Plant Physiol 145:236–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhang Y, Song Y, Zhang H, Fan J, Li Q, Zhang D, Xue Y (2017) Electrostatic potentials of the S-locus F-box proteins contribute to the pollen S specificity in self-incompatibility in Petunia hybrida. Plant J 89: 45–57

    Article  PubMed  CAS  Google Scholar 

  • Liu ZQ, Xu GH, Zhang SL (2007) Pyrus pyrifolia stylar S-RNase induces alterations in the actin cytoskeleton in self-pollen and tubes in vitro. Protoplasma 232(1–2):61–67

    Article  PubMed  Google Scholar 

  • Liu J, Li J, Wang H, Fu Z, Liu J, Yu Y (2011) Identification and expression analysis of ERF transcription factor genes in petunia during flower senescence and in response to hormone treatments. J Exp Bot 62(2):825–840

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Fan J, Li J, Song Y, Li Q, Zhang Y, Xue Y (2014) SCF SLF-mediated cytosolic degradation of S-RNase is required for cross-pollen compatibility in S-RNase-based self-incompatibility in Petunia hybrid. Front Genet 5:228

    PubMed  PubMed Central  Google Scholar 

  • Ma R, Han Z, Hu Z, Lin G, Gong X, Zhang H, Nasrallah JB, Chai J (2016) Structural basis for specific self-incompatibility response in Brassica. Cell Res 26:1320–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClure BA, Gray JE, Anderson MA, Clarke AE (1990) Self-incompatibility in Nicotiana alata involves degradation of pollen rRNA. Nature 347:757–760

    Article  CAS  Google Scholar 

  • Mühlenbock P, Plaszczyca M, Plaszczyca M, Mellerowicz E, Karpinski S (2007) Lysigenous aerenchyma formation in Arabidopsis is controlled by LESION SIMULATING DISEASE1. Plant Cell 19(11):3819–3830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Müller M, Munné-Bosch S (2015) Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiol 169:32–41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murase K, Shiba H, Iwano M, Che F-S, Watanabe M, Isogai A, Takayama S (2004) A membrane-anchored protein kinase involved in Brassica self-incompatibility signaling. Science 303:1516–1519

    Article  CAS  PubMed  Google Scholar 

  • Murfett J, Atherton TL, Mou B, Gasser C, McClure B (1994) S-RNase expressed in transgenic Nicotiana causes S-allele-specific pollen rejection. Nature 367:563–566

    Article  CAS  PubMed  Google Scholar 

  • Nishio T, Hinata K (1977) Analysis of S-specific proteins in stigmas of Brassica oleracea L. by isoelectric focusing. Heredity 38:391–396

    Article  Google Scholar 

  • O’Neill SD, Nadeau JA, Zhang XS, Bui AQ, Halevy AH (1993) Interorgan regulation of ethylene biosynthetic genes by pollination. Plant Cell 5(4):419–432

    PubMed  PubMed Central  Google Scholar 

  • Pan Y-J, Liu L, Lin Y-C, Zu Y-G, Li L-P, Tang Z-H (2016) Ethylene antagonizes salt-induced growth retardation and cell death process via transcriptional controlling of ethylene-, BAG- and senescence-associated genes in Arabidopsis. Front Plant Sci 7:696. https://doi.org/10.3389/fpls.2016.00696

    Article  PubMed  PubMed Central  Google Scholar 

  • Poulter NS, Staiger CJ, Rappoport JZ, Franklin-Tong VE (2010) Actin-binding proteins implicated in the formation of the punctate actin foci stimulated by the self-incompatibility response in Papaver. Plant Physiol 152:1274–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu H, Guan Y, Wang Y, Zhang S (2017) PLC-mediated signaling pathway in pollen tubes regulates the gametophytic self-incompatibility of Pyrus species. Front Plant Sci 8:1164

    Article  PubMed  PubMed Central  Google Scholar 

  • Rantong G, Evans R, Gunawardena A (2015) A lace plant ethylene receptors, AmERS1a and AmERS1c, regulate ethylene-induced programmed cell death during leaf morphogenesis. Plant Mol Biol 89(3):215–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers HJ (2006) Programmed Cell Death in floral organs: how and why do flowers die? Ann Bot 97(3):309–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roldan JA, Rojas H, Goldraij A (2012) Disorganization of F-actin cytoskeleton precedes vacuolar disruption in pollen tubes during the in vivo self-incompatibility response in Nicotiana alata. Ann Bot 110:787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schopher CR, Nasrallah ME, Nasrallah JB (1999) The male determinant of self-incompatibility in Brassica. Science 286:1697–1700

    Article  Google Scholar 

  • Serrano I, Pelliccione S, Olmedilla A (2010) Programmed-cell-death hallmarks in incompatible pollen and papillar stigma cells of Olea europaea L. under free pollination. Plant Cell Rep 29(6):561–572

    Article  PubMed  CAS  Google Scholar 

  • Serrano I, Romero-Puertas MC, Rodríguez-Serrano M, Sandalio LM, Olmedilla A (2012) Peroxynitrite mediates programmed cell death both in papillar cells and in self-incompatible pollen in the olive (Olea europaea L.). J Exp Bot 63(3):1479–1493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Serrano I, Romero-Puertas MC, Sandalio LM, Olmedilla A (2015) The role of reactive oxygen species and nitric oxide in programmed cell death associated with self-incompatibility. J Exp Bot 66(10):2869–2876

    Article  CAS  PubMed  Google Scholar 

  • Shibuya K, Tetsuya Y, Kazuo I (2016) Morphological changes in senescing petal cells and the regulatory mechanism of petal senescence. J Exp Bot 67(20):5909–5918

    Article  CAS  PubMed  Google Scholar 

  • Shimosato H, Yokota N, Shiba H, Iwano M, Entani T, Che FS, Watanabe M, Isogai A, Takayama S (2007) Characterization of the SP11/SCR high-affinity binding site involved in self/nonself recognition in Brassica self-incompatibility. Plant Cell 19:107–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sijacic P, Wang X, Skirpan A, Wang Y, Dowd P, McCubbin AG et al (2004) Identification of the pollen determinant of S-RNAse –mediated self-incompatibility. Nature 429:302–305

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Evensen KB, Kao T-H (1992) Ethylene synthesis and floral senescence following compatible and incompatible pollinations in Petunia inflata. Plant Physiol 9(1):38–45

    Article  Google Scholar 

  • Stephenson AG, Doughty J, Dixon S, Elleman C, Hiscock S, Dickinson HG (1997) The male determinant of self-incompatibility in Brassica oleracea is located in the pollen coating. Plant J 12:1351–1359

    Article  CAS  Google Scholar 

  • Sun P, Kao T-H (2013) Self-incompatibility in Petunia inflata: the relationship between a self-incompatibility locus F-box protein and its non-self S-RNases. Plant Cell 25:470–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun P, Li S, Lu D, Williams JS, Kao T-h (2015) Pollen S-locus F-box proteins of Petunia involved in S-RNase-based self-incompatibility are themselves subject to ubiquitin-mediated degradation. Plant J 83:213–223

    Article  CAS  PubMed  Google Scholar 

  • Takasaki T, Hatakeyama K, Suzuki G, Watanabe M, Isogai A, Hinata K (2000) The S receptor kinase determines self-incompatibility in Brassica stigma. Nature 403:913–916

    Article  CAS  PubMed  Google Scholar 

  • Takayama S, Isogai A (2005) Self-incompatibility in plants. Annu Rev Plant Biol 56:467–489

    Article  CAS  PubMed  Google Scholar 

  • Takayama S, Shimosato H, Shiba H, Funato M, Che FS, Watanabe M, Isogai A (2001) Direct ligand-receptor complex interaction controls Brassica self-incompatibility. Nature 413:534–538

    Article  CAS  PubMed  Google Scholar 

  • Thomas SG, Franklin-Tong VE (2004) Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 20:305–309

    Article  CAS  Google Scholar 

  • Thomas SG, Huang S, Li S, Staiger CJ, Franklin-Tong VE (2006) Actin depolymerization is sufficient to induce programmed cell death in self-incompatible pollen. J Cell Biol 174:221–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CL, Zhang SL (2011) A cascade signal pathway occurs in self-incompatibility of Pyrus pyrifolia. Plant Signal Behav 6(3):420–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CL, Xu GH, Jiang XT, Chen G, Wu J, Wu HQ, Zhang SL (2009) S-RNase triggers mitochondrial alteration and DNA degradation in the incompatible pollen tube of Pyrus pyrifolia in vitro. Plant J 57(2):220–229

    Article  CAS  PubMed  Google Scholar 

  • Wang CL, Wu J, Xu GH, Gao YB, Chen G, Wu JY, Wu HQ, Zhang SL (2010) S-RNase disrupts tip-localized reactive oxygen species and induces nuclear DNA degradation in incompatible pollen tubes of Pyrus pyrifolia. J Cell Sci 123(Pt 24):4301–4309

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Suwabe K, Susuki G (2012) Molecular genetics, physiology and biology of self-incompatibility in Brassicaceae. Proc Jpn Acad Ser B Phys Biol Sci 88:519–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler MJ, de Graaf BH, Hadjiosif N, Perry RM, Pouter NS, Osman K, Vatovec S, Harper A, Franklin FC, Franklin-Tong VE (2009) Identification of the pollen self-incompatibility determinant in Papaver rhoeas. Nature 459:992–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler MJ, Vatovec S, Franklin-Tong VE (2010) The pollen S-determinant in Papaver: comparisons with known plant receptors and protein ligand partners. J Exp Bot 61:2015–2025

    Article  CAS  PubMed  Google Scholar 

  • Wilkins KA, Bancroft J, Bosch M, Ings J, Smirnoff N, Franklin-Tong VE (2011) Reactive oxygen species and nitric oxide mediate actin reorganization and programmed cell death in the self-incompatibility response of Papaver. Plant Physiol 156(1):404–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkins KA, Poulter NS, Franklin-Tong VE (2014) Taking one for the team: self-recognition and cell suicide in pollen. J Exp Bot 65:1331–1342

    Article  CAS  PubMed  Google Scholar 

  • Wilkins KA, Bosch M, Hague T, Teng N, Poulter NA, Franklin-Tong VE (2015) Self-incompatibility–induced programmed cell death in field poppy pollen involves dramatic acidification of the incompatible pollen tube cytosol. Plant Physiol 167:766–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JS, Natale CA, Wang N, Brubaker TR, Sun P, Kao T-H (2014) Four previously identified Petunia inflata S-locus F-box genes are involved in pollen specificity in self-incompatibility. Mol Plant 7:567–569

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Wang S, Gu Y, Zhang S, Publicover SJ, Franklin-Tong VE (2011) Self-incompatibility in Papaver rhoeas activates nonspecific cation conductance permeable to Ca2+ and K+. Plant Physiol 155:963–973

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Williams JS, Wang N, Khatri WA, San Román D, T-h K (2018) Use of domain-swapping to identify candidate amino acids involved in differential interactions between two allelic variants of Type-1 S-Locus F-Box Protein and S3-RNase in Petunia inflate. Plant Cell Physiol 59(2):234–247

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Huang J, Zhao Z, Li Q, Sims TL, Xue Y (2010) The Skkp1-like protein SSK1 is required for cross-pollen compatibility in S-RNAse-based self-incompatibility. Plant J 62(1):52–63

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grant from the Russian Foundation for Basic Research (RFBR, no. 17-04-00153).

Author information

Authors and Affiliations

Authors

Contributions

L. Kovaleva and E. Zakharova wrote the manuscript; E. Zakharova, G. Timofeeva, and Ya. Golivanov performed the experiments; E. Baranova and L. B Bogoutdinova conducted imaging using TEM; I. Andreev and M. Khaliluev helped in manuscript preparation.

Corresponding author

Correspondence to L. V. Kovaleva.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Benedikt Kost

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovaleva, L.V., Zakharova, E.V., Timofeeva, G.V. et al. Aminooxyacetic acid (АОА), inhibitor of 1-aminocyclopropane-1-carboxilic acid (AСС) synthesis, suppresses self-incompatibility-induced programmed cell death in self-incompatible Petunia hybrida L. pollen tubes. Protoplasma 257, 213–227 (2020). https://doi.org/10.1007/s00709-019-01430-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-019-01430-x

Keywords

Navigation