Skip to main content
Log in

Elevated gibberellin altered morphology, anatomical structure, and transcriptional regulatory networks of hormones in celery leaves

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Gibberellins (GAs), as one of the important hormones in regulating the growth and development of higher plants, can significantly promote cell elongation and expansion. Celery is a widely grown leafy vegetable crop with rich nutritional value. However, the effect of gibberellins on celery leaves is unclear. In this paper, the celery variety “Jinnan Shiqin” plants were treated with gibberellic acid (GA3) and paclobutrazol (PBZ, a gibberellin inhibitor). Our results showed that GA3 treatment promoted the growth of celery leaves and caused lignification of celery leaf tissue. In addition, the transcript levels of genes associated with gibberellins, auxin, cytokinins, ethylene, jasmonic acid, abscisic acid, and brassinolide were altered in response to increased or decreased exogenous gibberellins or inhibitor. GA3 may regulate celery growth by interacting with other hormones through crosstalk mechanisms. This study provided a reference for further study of the regulation mechanism of gibberellins metabolism, and exerted effects on understanding the role of gibberellins in the growth and development of celery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CPS:

ent-copalyl diphosphate synthase

GA:

Gibberellin

GA3 :

Gibberellic acid

GA20ox:

GA20-oxidase

GA2ox:

GA2-oxidase

GA3ox:

GA3-oxidase

GGPP:

Geranylgeranyl diphosphate

GID1:

Gibberellin insensitive dwarf1

IPP:

Isopentenyl pyrophosphate

KAO:

ent-kaurenoic acid oxidase

KO:

ent-kaurene oxidase

KS:

ent-kaurene synthase

PBZ:

Paclobutrazol

RT-qPCR:

Quantitative real-time polymerase chain reaction

UV:

Ultraviolet

SHI:

Short internode

SLY1:

Sleepy1

SPY:

Spindly

References

  • Achard P, Vriezen WH, Van Der Straeten D, Harberd NP (2003) Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 15(12):2816–2825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311(5757):91–94

    Article  CAS  PubMed  Google Scholar 

  • Achard P, Gusti A, Cheminant S, Alioua M, Dhondt S, Coppens F, Beemster GTS, Genschik P (2009) Gibberellin signaling controls cell proliferation rate in Arabidopsis. Curr Biol 19(14):1188–1193

    Article  CAS  PubMed  Google Scholar 

  • Bai MY, Shang JX, Oh E, Fan M, Bai Y, Zentella R, Sun TP, Wang ZY (2012) Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat Cell Biol 14(8):810–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Wang XJ, Zhang LY, Lin SS, Liu DC, Wang QZ, Cai SY, El-Tanbouly R, Gan LJ, Wu H, Li Y (2016) Identification and characterization of tomato gibberellin 2-oxidases (GA2oxs) and effects of fruit-specific SlGA2ox1 overexpression on fruit and seed growth and development. Hortic Res 3:16059

    Article  PubMed  PubMed Central  Google Scholar 

  • Coles JP, Phillips AL, Croker SJ, García-Lepe R, Lewis MJ, Hedden P (1999) Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant J 17(5):547–556

    Article  CAS  PubMed  Google Scholar 

  • Eunkyoo O, Shinjiro Y, Jianhong H, Jikumaru Y, Byunghyuck J, Inyup P, Hee-Seung L, Tai-Ping S, Yuji K, Giltsu C (2007) PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19(4):1192–1208

    Article  Google Scholar 

  • Feng K, Hou XL, Li MY, Jiang Q, Xu ZS, Liu JX, Xiong AS (2018) CeleryDB: a genomic database for celery. Database (Oxford) 2018. https://doi.org/10.1093/database/bay070

  • Gallego-Bartolomé J, Minguet EG, Grau-Enguix F, Abbas M, Locascio A, Thomas SG, Alabadí D, Blázquez MA (2012) Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proc Natl Acad Sci U S A 109(33):13446–13451

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao XH, Xiao SL, Yao QF, Wang YJ, Fu XD (2011) An updated GA signaling ‘relief of repression’ regulatory model. Mol Plant 4(4):601–606

    Article  CAS  PubMed  Google Scholar 

  • Hedden P (2001) Gibberellin metabolism and its regulation. J Plant Growth Regul 20(4):317–318

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5(12):523–530

    Article  CAS  PubMed  Google Scholar 

  • Helliwell CA, Sheldon CC, Olive MR, Walker AR, Zeevaart JA, Peacock WJ, Dennis ES (1998) Cloning of the Arabidopsis ent-kaurene oxidase gene GA3. Proc Natl Acad Sci U S A 95(15):9019–9024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helliwell CA, Poole A, Peacock WJ, Dennis ES (1999) Arabidopsis ent-kaurene oxidase catalyzes three steps of gibberellin biosynthesis. Plant Physiol 119(2):507–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helliwell CA, Chandler PM, Poole A, Dennis ES, Peacock WJ (2001) The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci U S A 98(4):2065–2070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Raman AS, Ream JE, Fujiwara H, Cerny RE, Brown SM (1998) Overexpression of 20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis. Plant Physiol 118(3):773–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 15(17):1560–1565

    Article  CAS  PubMed  Google Scholar 

  • Li MY, Wang F, Jiang Q, Ma J, Xiong AS (2014) Identification of SSRs and differentially expressed genes in two cultivars of celery (Apium graveolens L.) by deep transcriptome sequencing. Hortic Res 1:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Li MY, Wang F, Jiang Q, Wang GL, Tian C, Xiong AS (2016) Validation and comparison of reference genes for qPCR normalization of celery (Apium graveolens) at different development stages. Front Plant Sci 7:313

    PubMed  PubMed Central  Google Scholar 

  • Li MY, Hou XL, Wang F, Tan GF, Xu ZS, Xiong AS (2018) Advances in the research of celery, an important Apiaceae vegetable crop. Crit Rev Biotechnol 38(2):172–183

    Article  CAS  PubMed  Google Scholar 

  • Mikihiro O, Atsushi H, Yukika Y, Ayuko K, Yuji K, Shinjiro Y (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15(7):1591–1604

    Article  Google Scholar 

  • Olszewski N, Sun TP, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14:Suppl:S61–Suppl:S80

    Article  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips AL, Ward DA, Uknes S, Appleford NE, Lange T, Huttly AK, Gaskin P, Graebe JE, Hedden P (1995) Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiol 108(3):1049–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross JJ, O’Neill DP (2002) Auxin regulation of the gibberellin pathway in pea. Plant Physiol 130(4):1974–1982

    Article  PubMed  PubMed Central  Google Scholar 

  • Ross JJ, O’Neill DP, Smith JJ, Kerckhoffs LH, Elliott RC (2010) Evidence that auxin promotes gibberellin A1 biosynthesis in pea. Plant J 21(6):547–552

    Article  Google Scholar 

  • Silverstone AL, Sun T (2000) Gibberellins and the green revolution. Trends Plant Sci 5(1):1–2

    Article  CAS  PubMed  Google Scholar 

  • Susana UT, Fernán F, Ilda C, Beemster GTS, Rishikesh B, Ranjan S, Peter D, Jim H, Bennett MJ (2009) Gibberellin signaling in the endodermis controls Arabidopsis root meristem size. Curr Biol 19(14):1194–1199

    Article  Google Scholar 

  • Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2- oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci U S A 96(8):4698–4703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ubeda-Tomás S, Federici F, Casimiro I, Beemster GTS, Bhalerao R, Swarup R, Doerner P, Haseloff J, Bennett MJ (2009) Gibberellin signaling in the endodermis controls Arabidopsis root meristem size. Curr Biol 19(14):1194–1199

    Article  PubMed  Google Scholar 

  • Wang GL, Feng Q, Xu ZS, Feng W, Xiong AS (2015a) Exogenous gibberellin altered morphology, anatomic and transcriptional regulatory networks of hormones in carrot root and shoot. BMC Plant Biol 15:290

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang GL, Xiong F, Que F, Xu ZS, Wang F, Xiong AS (2015b) Morphological characteristics, anatomical structure, and gene expression: novel insights into gibberellin biosynthesis and perception during carrot growth and development. Hortic Res 2:15028

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang GL, Huang Y, Zhang XY, Xu ZS, Wang F, Xiong AS (2016) Transcriptome-based identification of genes revealed differential expression profiles and lignin accumulation during root development in cultivated and wild carrots. Plant Cell Rep 35(8):1743–1755

    Article  CAS  PubMed  Google Scholar 

  • Wolbang CM, Ross JJ (2001) Auxin promotes gibberellin biosynthesis in decapitated tobacco plants. Planta 214(1):153–157

    Article  CAS  PubMed  Google Scholar 

  • Wolbang CM, Chandler PM, Smith JJ, Ross JJ (2004) Auxin from the developing inflorescence is required for the biosynthesis of active gibberellins in barley stems. Plant Physiol 134(2):769–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaarit GW, Inbar M, Roy B, John A, Neil O, Naomi O, Yuval E, David W (2005) Cross talk between gibberellin and cytokinin: the Arabidopsis GA response inhibitor SPINDLY plays a positive role in cytokinin signaling. Plant Cell 17(1):92–102

    Article  Google Scholar 

  • Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N (2005) Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol 15(17):1566–1571

    Article  CAS  PubMed  Google Scholar 

  • Yukika Y, Mikihiro O, Ayuko K, Atsushi H, Yuji K, Shinjiro Y (2004) Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16(2):367–378

    Article  Google Scholar 

  • Zentella R, Zhang Z, Park M, Thomas SG, Endo A, Murase K, Fleet C, Jikumaru Y, Nambara E, Kamiya Y (2007) Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19(10):3037–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang WB, Gao ZH, Wen LH, Huo XM, Cai BH, Zhang Z (2015) Metabolic changes upon flower bud break in Japanese apricot are enhanced by exogenous GA4. Hortic Res 2:15046

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research was supported by Jiangsu Agricultural Science and Technology Innovation Fund [CX(18)2007], National Natural Science Foundation of China (31272175), and Priority Academic Program Development of Jiangsu Higher Education Institutions Project (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: ASX AQD. Performed the experiments: AQD KF JXL ZSX. Analyzed the data: AQD KF ASX. Contributed reagents/materials/analysis tools: ASX. Wrote the paper: AQD. Revised the paper: ASX FQ. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ai-Sheng Xiong.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Klaus Harter

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, AQ., Feng, K., Liu, JX. et al. Elevated gibberellin altered morphology, anatomical structure, and transcriptional regulatory networks of hormones in celery leaves. Protoplasma 256, 1507–1517 (2019). https://doi.org/10.1007/s00709-019-01396-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-019-01396-w

Keywords

Navigation