Skip to main content
Log in

Impact of antimycin A and myxothiazol on cadmium-induced superoxide, hydrogen peroxide, and nitric oxide generation in barley root tip

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

In order to gain more insight into the involvement of mitochondrial complex III in the Cd-induced stress, we studied the effect of complex III inhibitors, antimycin A (AA), and myxothiazol (MYXO), on the Cd-induced ROS and NO generation in the barley root tip. Short-term exposure of barley roots to either MYXO or AA provoked a dose-dependent increase in both H2O2 and NO formation. In contrast to H2O2 generation, an enhanced superoxide formation in the transition zone of the root was a characteristic feature of AA-treated roots. MYXO and AA co-treatment had an additive effect on the amount of both H2O2 and NO formed in roots. On the other hand, AA-induced superoxide formation was markedly reversed in roots co-treated with MYXO. Both AA and MYXO exacerbated the Cd-mediated H2O2 or NO generation in the root tip. On the contrary, while AA also exacerbated the Cd-induced superoxide generation, MYXO dose-dependently attenuated it. These data provide strong evidence that ROS generation, a very early symptom of Cd toxicity in roots, is originated in mitochondria. Cd, similarly to AA, generates superoxide by blocking the mitochondrial electron transport chain (ETC) at complex III. In turn, the site of Cd-induced NO generation is not associated with complex III, but ROS formed in mitochondria at this third complex of ETC are probably responsible for enhanced NO generation in barley root under Cd stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alber NA, Sivanesan H, Vanlerberghe GC (2017) The occurrence and control of nitric oxide generation by the plant mitochondrial electron transport chain. Plant Cell Environ 40:1074–1085

    Article  CAS  PubMed  Google Scholar 

  • Alemayehu A, Zelinová V, Bočová B, Huttová J, Mistrík I, Tamás L (2015) Enhanced nitric oxide generation in root transition zone during the early stage of cadmium stress is required for maintaining root growth in barley. Plant Soil 390:213–222

    Article  CAS  Google Scholar 

  • Anjum NA, Gill SS, Gill R, Hasanuzzaman M, Duarte AC, Pereira E, Ahmad I, Tuteja R, Tuteja N (2014) Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple and associated enzymes. Protoplasma 251:1265–1283

    Article  CAS  PubMed  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Deckert J, Rucińska-Sobkowiak R, Gzyl J, Pawlak-Sprada S, Abramowski D, Jelonek T, Gwóźdź EA (2012) Nitric oxide implication in cadmium-induced programmed cell death in roots and signaling response of yellow lupine plants. Plant Physiol Biochem 58:124–134

    Article  CAS  PubMed  Google Scholar 

  • Besson-Bard A, Gravot A, Richaud P, Auroy P, Duc C, Gaymard F, Taconnat L, Renou J-P, Pugin A, Wendehenne D (2009) Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol 149:1302–1315

    Article  PubMed  PubMed Central  Google Scholar 

  • Bi YH, Chen WL, Zhang WN, Zhou Q, Yun LJ, Xing D (2009) Production of reactive oxygen species, impairment of photosynthetic function and dynamic changes in mitochondria are early events in cadmium-induced cell death in Arabidopsis thaliana. Biol Cell 101:629–643

    Article  CAS  PubMed  Google Scholar 

  • Castro-Guerrero NA, Rodríguez-Zavala JS, Marín- Hernández A, Rodríguez-Enríquez S, Moreno-Sánchez R (2008) Enhanced alternative oxidase and antioxidant enzymes under Cd2+ stress in Euglena. J Bioenerg Biomembr 40:227–235

    Article  CAS  PubMed  Google Scholar 

  • Chen YX, He YF, Luo YM, Yu YL, Lin Q, Wong MH (2003a) Physiological mechanism of plant roots exposed to cadmium. Chemosphere 50:789–793

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ (2003b) Production of reactive oxygen species by mitochondria. Central role of complex III. J Biol Chem 278:36027–36031

    Article  CAS  PubMed  Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ, Nawrot T, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940

    Article  CAS  PubMed  Google Scholar 

  • De Michele R, Vurro E, Rigo C, Costa A, Elviri L, Di Valentin M, Careri M, Zottini M, Sanita di Toppi L, Lo Schiavo F (2009) Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures. Plant Physiol 150:217–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fancy NN, Bahlmann A-K, Loake GJ (2017) Nitric oxide function in plant abiotic stress. Plant Cell Environ 40:462–472

    Article  CAS  PubMed  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    Article  CAS  Google Scholar 

  • Gill SS, Hasanuzzaman M, Nahar K, Macovei A, Tuteja N (2013) Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiol Biochem 63:254–261

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Igamberdiev AU (2016) Reactive nitrogen species in mitochondria and their implications in plant energy status and hypoxic stress tolerance. Front Plant Sci 7:369

    PubMed  PubMed Central  Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT (2011) On the origins of nitric oxide. Trends Plant Sci 16:160–168

    Article  CAS  PubMed  Google Scholar 

  • Han D, Williams E, Cadenas E (2001) Mitochondrial respiratory chain-dependent generation of superoxde anion and its release into the intermembrane space. Biochem J 353:411–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han FX, Banin A, Su Y, Monts DL, Plodinec MJ, Kingery WL, Triplett GE (2002) Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften 89:497–504

    Article  CAS  PubMed  Google Scholar 

  • Han D, Antunes F, Canali R, Rettori D, Cadenas E (2003) Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 278:5557–5563

    Article  CAS  PubMed  Google Scholar 

  • He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140

    Article  CAS  PubMed  Google Scholar 

  • Heyno E, Klose C, Krieger-Liszkay A (2008) Origin of cadmium-induced reactive oxygen species production: mitochondrial electron transfer versus plasma membrane NADPH oxidase. New Phytol 179:687–699

    Article  CAS  PubMed  Google Scholar 

  • Huang X, von Rad U, Durner J (2002) Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta 215:914–923

    Article  CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Bykova NV, Shah JK, Hill RD (2010) Anoxic nitric oxide cycling in plants: participating reactions and possible mechanisms. Physiol Plant 138:393–404

    Article  CAS  PubMed  Google Scholar 

  • Jones RD, Hancock JT, Morice AH (2000) NADPH oxidase: a universal oxygen sensor? Free Rad Biol Med 29:416–424

    Article  CAS  PubMed  Google Scholar 

  • Keunen E, Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2013) Alternative respiration as a primary defence during cadmium-induced mitochondrial oxidative challenge in Arabidopsis thaliana. Environ Exp Bot 91:63–73

    Article  CAS  Google Scholar 

  • Khan MA, Khan S, Khan A, Alam M (2017) Soil contamination with cadmium, consequences and remediation using organic amendments. Sci Total Environ 601-602:1591–1605

    Article  CAS  PubMed  Google Scholar 

  • Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Mitochondria and reactive oxygen species. Free Rad Biol Med 47:333–343

    Article  CAS  PubMed  Google Scholar 

  • Kozlov AV, Staniek K, Nohl H (1999) Nitrite reductase activity is a novel function of mammalian mitochondria. FEBS Lett 454:127–130

    Article  CAS  PubMed  Google Scholar 

  • Liptáková Ľ, Bočová B, Huttová J, Mistrík I, Tamás L (2012) Superoxide production induced by short-term exposure of barley roots to cadmium, auxin, alloxan and sodium dodecyl sulfate. Plant Cell Rep 31:2189–2197

    Article  CAS  PubMed  Google Scholar 

  • Lum HK, Butt YKC, Lo SCL (2002) Hydrogen peroxide induces a rapid production of nitric oxide in mung bean (Phaseolus aureus). Nitric Oxide 6:205–213

    Article  CAS  PubMed  Google Scholar 

  • Mahawar L, Kumar R, Shekhawat GS (2018) Evaluation of heme oxygenase 1 (HO 1) in cd and Ni induced cytotoxicity and crosstalk with ROS quenching enzymes in two to four leaf stage seedlings of Vigna radiata. Protoplasma 255:527–545

    Article  CAS  PubMed  Google Scholar 

  • Mahmood T, Gupta KJ, Kaiser WM (2009) Cadmium stress stimulates nitric oxide production by wheat roots. Pak J Bot 41:1285–1290

    CAS  Google Scholar 

  • Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17:9–15

    Article  CAS  PubMed  Google Scholar 

  • Maxwell DP, Wang Y, McIntosh L (1999) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci U S A 96:8271–8276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miccadei S, Floridi A (1993) Sites of inhibition of mitochondrial electron transport by cadmium. Chemico-Biol Interac 89:159–167

    Article  CAS  Google Scholar 

  • Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  CAS  PubMed  Google Scholar 

  • Muller F, Crofts AR, Kramer DM (2002) Multiple Q-cycle bypass reactions at the Q0 site of the cytochrome bc1 complex. Biochemistry 41:7866–7874

    Article  CAS  PubMed  Google Scholar 

  • Muller FL, Liu Y, Van Remmen H (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279:49064–49073

    Article  CAS  PubMed  Google Scholar 

  • Nohl H, Staniek K, Kozlov AV (2005) The existence and significance of a mitochondrial nitrite reductase. Redox Rep 10:281–286

    Article  CAS  PubMed  Google Scholar 

  • Orozco-Cárdenas ML, Narváez-Vásquez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179–191

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortega-Villasante C, Hernández LE, Rellán-Álvarez R, Del Campo FF, Carpena-Ruiz RO (2007) Rapid alteration of cellular redox homeostasis upon exposure to cadmium and mercury in alfalfa seedlings. New Phytol 176:96–107

    Article  CAS  PubMed  Google Scholar 

  • Poderoso JJ, Lisdero C, Schöpfer F, Riobó N, Carreras MC, Cadenas E, Boveris A (1999) The regulation of mitochondrial oxygen uptake by redox reactions involving nitric oxide and ubiquinol. J Biol Chem 274:37709–37716

    Article  CAS  PubMed  Google Scholar 

  • Raha S, McEachern GE, Myint AT, Robinson BH (2000) Superoxides from mitochondrial complex III: the role of manganese superoxide dismutase. Free Rad Biol Med 29:170–180

    Article  CAS  PubMed  Google Scholar 

  • Ranieri A, Castagna A, Scebba F, Careri M, Zagnoni I, Predieri G, Pagliari M, Sanita di Toppi L (2005) Oxidative stress and phytochelatin characterisation in bread wheat exposed to cadmium excess. Plant Physiol Biochem 43:45–54

    Article  CAS  PubMed  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    Article  CAS  PubMed  Google Scholar 

  • Schützendübel A, Nikolova P, Rudolf C, Polle A (2002) Cadmium and H2O2-induced oxidative stress in Populus canescens roots. Plant Physiol Biochem 40:577–584

    Article  Google Scholar 

  • Smiri M, Chaoui A, Rouhier N, Kamel C, Gelhaye E, Jacquot J-P, El Ferjani E (2010) Cadmium induced mitochondrial redox changes in germinating pea seed. Biometals 23:973–984

    Article  CAS  PubMed  Google Scholar 

  • Srivastava RK, Rajpoot R, Pandey P, Rani A, Dubey RS (2018) Cadmium alters mitochondrial membrane potential, inhibits electron transport chain activity and induces callose deposition in rice seedlings. J Plant Growth Regul 37:335–344

    Article  CAS  Google Scholar 

  • Starkov AA, Fiskum G (2001) Myxothiazol induces H2O2 production from mitochondrial respiratory chain. Biochem Biophys Res Commun 281:645–650

    Article  CAS  PubMed  Google Scholar 

  • Tamás L, Mistrík I, Zelinová V (2016) Cadmium activates both diphenyleneiodonium- and rotenone-sensitive superoxide production in barley root tips. Planta 244:1277–1287

    Article  CAS  PubMed  Google Scholar 

  • Verma K, Mehta SK, Shekhawat GS (2013) Nitric oxide (NO) counteracts cadmium induced cytotoxic processes mediated by reactive oxygen species (ROS) in Brassica juncea: cross-talk between ROS, NO and antioxidant responses. Biometals 26:255–269

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Fang J, Leonard SS, Rao KMK (2004) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Rad Biol Med 36:1434–1443

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would also like to thank the anonymous reviewers for their helpful criticisms, which improved the manuscript.

Funding

This work was supported by the Grant Agency VEGA, project No. 2/0039/16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladislav Tamás.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Handling Editor: Bhumi Nath Tripathi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelinová, V., Demecsová, L. & Tamás, L. Impact of antimycin A and myxothiazol on cadmium-induced superoxide, hydrogen peroxide, and nitric oxide generation in barley root tip. Protoplasma 256, 1375–1383 (2019). https://doi.org/10.1007/s00709-019-01389-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-019-01389-9

Keywords

Navigation