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Abstract
In this work, the involvement of programmed cell death (PCD) in the wound-induced postharvest browning disorder and
senescence in butterhead lettuce (Lactuca sativa L.) fresh-cuts was studied. At the wounded (cut, bruised) sites, rapid browning,
loss of chlorophyll and massive cell death, accompanied with accumulation of reactive oxygen species and increased electrolyte
leakage occurred in a narrow strip of tissue adjacent the injury. The dead cell morphology (protoplast and nuclei shrinkage)
together with the biochemical and physiological changes resembled necrotic PCD type. With a slight delay post-wounding,
senescence associated with similar cell death features was initiated in distant non-wounded sites. In addition to necrotic PCD,
both in wounded and senescing tissue, the appearance of empty cell corpses was observed, indicating that part of the cells might
undergo vacuolar PCD (self-digestion of cellular content after vacuole collapse). The wounding-induced local cell death at the
primary site of damage suggested that PCD may serve as a mechanism to seal-off the wound by building a physical barrier of
dead cells. However, the cell death at sites remote from the wound suggests the distribution of long-distance senescence-inducing
wound messengers. Trichomes in unwounded tissue often were the first to show H2O2 accumulation and dead cells; thereafter,
the elevated H2O2 and cell death appeared in connecting cells and senescence progressed over larger areas. This suggests that
trichomes may contribute to mediating the wound signalling leading to subsequent senescence. Our findings demonstrate that
PCD is an integral part of the wound syndrome in fresh-cut lettuce.
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Introduction

The shelf life of fresh-cut lettuce (a demanded ‘ready to use’
vegetable product) is largely dependent on factors such as
genetic background, developmental stage at harvest of the
starting material and postharvest handling conditions (Bolin

et al. 1997; Gil et al. 2012; Martínez-Sánchez et al. 2012;
Witkowska and Woltering 2013, 2014; Pareek 2016).
During processing, the fresh-cuts suffer from wound stress
resulting from cutting, bruising, folding, pressing and other
mechanical interventions that disrupt the integrity and physi-
ological functioning of the leaf tissues. Major deterioration in
the leafy fresh-cuts is pinking and browning at the wounded
sites (Couture et al. 1993; Castañer et al. 1996; Cantwell and
Suslow 2002; Hodges and Toivonen 2008; Pedreschi and
Lurie 2015). Among others, treatments with gaseous com-
pounds (e.g. nitric oxide (NO), ozone, hydrogen sulphide),
soluble substances with antioxidant properties, chlorine and
calcium-based solutions, hot water, UV radiation, high pres-
sure, modulations of light quality and photoperiod and, genet-
ic manipulations are shown to suppress the wound-induced
browning, delay senescence, stimulate the expression of de-
fence genes or downregulate stress- and senescence-
associated genes (Coupe et al. 2003; Rico et al. 2006; Eason
et al. 2014; Li et al. 2014; Mahajan et al. 2014; Iakimova and
Woltering 2015; Woltering and Seifu 2015). Storage under
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modified (MA) or controlled atmosphere (CA) with low O2

(< 3%) and increased CO2 levels (up to 10–15%) is another
technology for preventing the occurrence of browning syn-
drome and premature senescence. (Ballantyne et al. 1988;
López-Gálvez et al. 1996a; Fonseca et al. 2002).

Although the physiological, biochemical and molecular
processes involved in browning and senescence disorders
have gotten appropriate attention (e.g. Hodges and Toivonen
2008; Pareek 2016), still little is known about the cellular
changes underlying the wound response in fresh-cuts and par-
ticularly at the primary site of injury. Wound-induced brow-
ning is generally attributed to the production of phenolic com-
pounds linked to the activity of polyphenol oxidase, phenyl-
alanine ammonia lyase and peroxidase and is defined as en-
zymatic browning (Couture et al. 1993; Pereyra et al.
2005; López-Gálvez et al. 1996b; Degl'Innocenti et al. 2007;
Saltveit and Choi 2007). Recent works suggested that
lysophospholipids are the most probable primary wound sig-
nals involved in the formation of browning substances (García
et al. 2017; Saltveit 2018).

An advanced view is that postharvest deterioration of fresh
vegetables and fruits might be related to the occurrence of
programmed cell death (PCD). It is observed that storage-
induced disorders such as chilling injuries and low O2 and
high CO2 disorders are often accompanied by death and some-
times disappearance of cells at specific locations. Fluids from
dying cells may leak into the intercellular spaces causing mac-
roscopic signs of deterioration (e.g. brown, sunken or water
soaked lesions, scald and tissue dismantlement) (Cantwell and
Suslow 2002; Coupe et al. 2003; Fernández-Trujillo and
Martínez 2006; Saltveit and Choi 2007; Hurr et al. 2010;
Woltering and Iakimova 2010; Eason et al. 2014; Iakimova
andWoltering 2015; Cantre et al. 2017). The understanding of
the role of PCD in postharvest disorders is, however, still in its
infancy.

PCD is a highly coordinated process of cellular suicide. In
eukaryotic systems, it is a part of the normal development and
can operate as a survival mechanism at stressful circumstances
(Pennell and Lamb 1997; Gunawardena et al. 2001; Lam 2004;
Reape et al. 2008). According to the morphological classifica-
tion introduced by van Doorn et al. (2011), plant PCD is de-
fined in two major categories: vacuolar cell death and necrosis.
Vacuolar cell death is featured by autophagic activity such as
formation of lysosome-like lytic organelles, vacuolar growth
and activation of vacuolar processing enzyme (VPE), tonoplast
rupture and vacuole-mediated digestion of the cellular content
leaving a virtually empty cell corpse behind (van Doorn and
Woltering 2010). Hallmarks of necrotic cell death are swelling
of mitochondria and changes of membrane permeability, early
rupture of plasmamembrane and electrolyte leakage, protoplast
shrinkage and nucleus compaction. Necrotic PCD is associated
also with respiratory decline, ATP depletion, diminished pho-
tosynthetic activity and oxidative stress-related processes. This

type of cell death results in a largely unprocessed cell corpse.
DNA degradation yielding a ladder pattern, due to enzymatic
cleavage of DNA into oligonucleosomal fragments of 180 bp
and multiples thereof, and activation of cell death related plant
caspase-like proteases that are functional homologues of
caspases (cysteinyl-aspartic proteases—the main executioners
of animal apoptotic PCD) (Woltering 2010) may occur in both
plant PCD categories. Forms of PCD expressing mixed pheno-
type are classified as cell death modalities. An example is the
hypersensitive response (HR)—rapid local cell death occurring
in plant-microbe interactions and aimed at suppressing the
pathogen growth and restricting the infection to the primary
site of microbial attack (Levine et al. 1994; Mur et al. 2008).
Senescence and most cases of developmental PCD (e.g.
xylogenesis) are generally thought to conform to the vacuolar
cell death type. However, in senescing leaves and petals and in
differentiating xylem vessels distinct and similar molecular pat-
terns and physiological processes reminiscent of necrotic cell
death have also been documented (Quirino et al. 2000; van
Doorn and Woltering 2004, 2005, 2008; Lim et al. 2007;
Price et al. 2008; Shibuya et al. 2016; Iakimova and
Woltering 2017).We support the concept that the entire process
of senescence is a PCD event in which autophagy in the early
phases and the final culmination of cellular demise are tightly
integrated. PCD—related gene expression, signalling pathways
and the autophagic activity are initiated and cells acquire com-
petence for undergoing cell death early in advance of the cell
death execution phase (Yen and Yang 1998; Quirino et al.
2000; van Doorn and Woltering 2004; Shibuya et al. 2016; In
this paper senescence is considered in this context.

The occurrence of PCD in senescing postharvest lettuce
has been so far a subject of only few works. Wagstaff et al.
(2007) found that the reduced shelf life of harvested baby
lettuce leaves was associated with disruption of plastid mem-
branes and the nuclear envelope, plasmolysis and electrolyte
leakage. Electron microscopy disclosed the presence of cyto-
plasmic fragments in the vacuole and increased appearance of
vesicles and microbodies in mesophyll and epidermal cells.
The authors also observed disappearance of cells in the leaf
tissue. These features resemble mainly the class of vacuolar
cell death with some features of necrotic PCD. Features rem-
iniscent of vacuolar PCD were also described in fresh-cuts of
asparagus lettuce which were subjected to high pressure
(above 100 MPa) processing. The excessive pressure caused
cell death characterised by formation of vesicles in the cyto-
plasm, disappearance of chloroplasts and vacuole rupture
(Zhang et al. 2015). Investigations on broccoli florets showed
that quality decline during postharvest period was accompa-
nied by cell death expressing common hallmarks of necrotic
and vacuolar PCD such as DNA laddering and increasing
number of TUNEL (terminal deoxynucleotidyl transferase-
mediated dUTP nick end labelling) positive nuclei (a marker
of double-strand DNA brakes). Tissue deterioration involved
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also changes in expression of the PCD-related genes LSD1
(lesion simulating disease), Bax inhibitor (BI) and serine
palmitoyltransferase (SPT), an enzyme in the sphingolipid
signalling pathway (Coupe et al. 2004). Downregulation of
cell death, senescence and stress-associated genes encoding
for cysteine proteases such as BoCP1, BoCP2, BoCP3 and
BoCP4 was documented to reduce the dehydration and delay
senescence of postharvest broccoli (Coupe et al. 2003, 2004;
Gapper et al. 2005; Eason et al. 2014). Bioengineering manip-
ulation of the hormonal status is another approach for regulat-
ing the occurrence of cell death and senescence postharvest.
For example, McCabe et al. (2001) reported that senescence in
harvested mature heads of homozygous transgenic lettuce
transformed with Arabidopsis ipt gene (encoding for
isopentenyl phosphotransferase—enzyme from cytokinin bio-
synthesis and under control of the senescence-specific SAG12
promoter) was significantly retarded. Leaf senescence was
also largely prevented in mutant lettuce and broccoli with
suppressed ethylene synthesis genes (Henzi et al. 2000;
Buchanan-Wollaston et al. 2003; Gapper et al. 2005).

Together, the mentioned findings indicate that in the leafy
vegetables PCD processes may be responsible for at least
some of the postharvest disorders. However, the cellular bases
of wound-induced deterioration need to be better elucidated.

The rapid occurrence of browning in fresh-cut lettuce, es-
pecially at the primary site of wounding, makes this product
an appropriate model to study the contribution of PCD to the
wound response. In the present study wound-induced PCD
events in lettuce (Lactuca sativa L.) fresh-cuts are addressed.
Morphological, physiological and biochemical determinants
of cell death were identified by applying a combined analyti-
cal approach involving microscopy, histochemical and quan-
titative image analyses, biochemical assay and visual obser-
vations. It is shown that PCD is an integral part of the brow-
ning and senescence syndrome in lettuce fresh-cuts. The pro-
cess may serve for building a physical barrier for preventing
the spread of cell death from the wounded site. The observa-
tions suggest that a wound signal generated at the primary site
of injury may be communicated toward unwounded remote
cells. A possible role of trichomes in mediating long-distance
wound signalling leading to consecutive senescence/cell death
is discussed.

Materials and methods

Plant material and wounding treatments

Greenhouse grown butterhead lettuce (Lactuca sativa L.), cv.
Cosmopolia was harvested at commercial maturity (4-week-
old heads), transported to the laboratory, plastic covered and
stored for 12 h in a cold room (4 °C and 96% relative humid-
ity). The outer leaves of the heads were discarded; the leaves

from the second and third whorls (mature leaves) inward from
discarded ones were detached and midribs and major veins
removed. With a sharp stainless steel knife these leaves were
cut into pieces of approximate size 8 × 2 cm. To assess the
effect of wounding, in addition to the damage at the cutting
edge, in some leaf pieces, extra wounding was done by re-
moval of a small tissue disc (0.5 cm diameter) using a cork
borer, and the tissue at sites distant from the cut edge and
limited to an area of approximately 1–5 mm was bruised with
the tip of plastic syringe (without a needle). The additionally
injured fresh-cuts were determined as group 1, (‘bruised
shreds’) and the fresh-cuts subjected only to wounding at the
cut surface were group 2 (‘non-bruised shreds’).

Storage conditions

The samples were placed in plastic boxes, the bottom of which
was lined with moist filter paper (Whatman grade No. 3) for
preventing the desiccation and with a layer of plasticized wire
mesh to avoid the contact of plant tissues with the moist paper.
The boxes were covered with transparent plastic lids punc-
tured at 16 points (approximately 1 mm diameter) to allow
sufficient gas exchange with the environment and prevent
accumulation of CO2, ethylene and other gasses released from
the plant material. The samples were stored in a climate room,
at 4 °C, in darkness. The experiments were undertaken with
3–4 boxes (replicates) for analyses at each time point. In total,
5 independent experiments were performed.

Visual evaluation of deterioration and shelf life

Wound-induced browning deterioration was visually estimat-
ed by severity of browning at the cut surface and at locally
wounded tissue in the ‘bruised shreds’, according to a scale
previously described by Iakimova and Woltering (2015): 5—
none; 4—slight; 3—moderate; 2—severe; 1—extreme brow-
ning. Senescence and shelf life were scored in the ‘non-
bruised’ samples by combining overall visual quality (OVQ)
and appearance of browning using two increment scale (1–9)
and intermediate levels, partially adopted from Kader et al.
(1973): 9—no yellowing, leaf tissues in full turgor, excellent,
essentially free of defects; 7—good, minor reduction of leaf
turgor, not objectionable yellowing and other defects; 5—fair,
slightly to moderately objectionable senescence appearing as
reduced leaf turgor, lower limit of sale appeal; 3—poor, ad-
vanced senescence expressed as excessive loss of leaf turgor
and severe yellowing, limit of saleability; 1—extremely poor,
very advanced senescence associated with severe tissue
yellowing, necrotic lesions, desiccation and decay, not usable.
The shelf life was considered terminated at OVQ rank below 5
and browning rank below 3.
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Microscopy

Microscopy was performed on leaf discs (0.5 cm diameter)
isolated with a cork borer from wounded sites (cut edges and
bruising sites) and from non-wounded tissue. Presented mi-
crographs of the histological analyses are representative ex-
amples of about 75 observed microscopy fields (5 fields per
micrograph) in commonly 15 micrographs collected at each
time point in 3 independent experiments.

Histochemical detection and quantification of H2O2

Hydrogen perox ide was d i s t ingu i shed by 3 ,3 ′ -
Diaminobenzidine (DAB) staining following the protocol of
Thordal-Christensen et al. (1997) and as described by
Iakimova and Woltering (2015). The samples were observed
and imaged under light microscope Leitz Aristoplan equipped
with Nikon Digital camera DMX 1200. In the presence of
H2O2 DAB is polymerised giving a visible brown stain with
intensity corresponding to the amount of H2O2.

The amount of H2O2 was quantified by pixel intensity of
the brown DAB deposits measured with computer application
ImageJ (Image Processing and Analysis Application in Java,
National Institute of Health (NIH), USA) as described in
Iakimova and Woltering (2015). Pixel intensities of DAB im-
ages (in gray values, background subtracted) range from 0 to
255. Value 0 corresponds to the darkest colour and 255 to the
lightest colour in the image. Higher intensity corresponds to
lower H2O2 amount.

Histochemical detection of overall ROS

The production of overall ROS was analysed by using the
fluorescent probe 2′,7′-dichlorofluorescein diacetate
(DCF-DA), according to Sakamoto et al. (2005). This
dye is non-fluorescent in reduced form and readily per-
meates the plasma membrane. Once in the cell, non-
specific esterases cleave its acetate groups and the dye
becomes membrane impermeable, trapped inside the cell.
When oxidised by H2O2, hydroxyl, peroxyl and other free
oxygen radical products, DCF-DA is converted to the
green fluorescing form 2′,7′-dichlorofluorescin and ROS
appeared in green. Overall ROS were visualised in leaf
discs (0.5 cm diameter), collected as described above.
The samples were washed with distilled water and incu-
bated in presence of 10 μmol l−1 DCF-DA for 60 min at
room temperature, in darkness. The fluorescence emitted
from stained ROS was detected under Zeiss Axioskop
fluorescent microscope equipped with filter combination
excitation/emission wavelength 490/525 nm and with
Nikon Digital camera DMX 1200 for imaging.

Quantification of the fluorescence emitted from chlorophyll

The change in chlorophyll was estimated by the red fluores-
cence emitted at wavelength 490/525 (excitation/emission) by
using Zeiss Axioskop fluorescent microscope equipped with
Nikon Digital camera DMX 1200. Chlorophyll amount was
quantitatively expressed in pixel intensity by analysing the
images using ImageJ. Pixel intensity (indicating the presence
of chlorophyll) was measured similarly to the described for
H2O2 quantification. However, opposite to the readings for
H2O2, the higher pixel intensity corresponds to higher chloro-
phyll amount. Zero value of grey corresponds to the lower level
of fluorescence and value 255 represents the highest level.

Cell death determination

Cell death was analysed by Evans Blue and propidium iodide
(PI) staining.

Evans Blue staining of the dead cells (the dye is excluded
from the living cells) was performed according to Keogh et al.
(1980), with slight modifications as described in Iakimova and
Woltering (2015). The dead cells were identified by the blue
coloration of their content (Evans Blue positive cells).
Observations and imaging were done by light microscope
Leitz Aristoplan equipped with Nikon Digital camera DMX
1200.

The dead cells were also distinguished by labelling
with the fluorophore PI which penetrates the damaged
plasma membrane and the nucleus. This dye emits red
fluorescence after binding to DNA by intercalating be-
tween the bases with little or no sequence preference
and with a stoichiometry per 4–5 base pairs of DNA.
The stained cells are defined as PI positive. Following
the manufacturer instructions (Molecular Probes, Inc.),
leaf discs were incubated in 500 nmol l−1 PI (in dH2O2)
for 1–5 min and then rinsed with dH2O2. The observa-
tions were done under fluorescent Zeiss Axioskop micro-
scope, excitation/emission filters 530/625 nm. Images
were taken with Nikon Digital camera DMX 1200.

Electrolyte leakage assay

In addition to Evans Blue and PI stainings, cell death was
estimated by electrolyte leakage (EL) which is a marker of
the permeability of the cellular membranes. The EL was de-
termined by measuring the electrical conductivity (EC) ac-
cording to Song et al. (2012) and as earlier described by
Iakimova and Woltering (2015), and expressed in percentage,
calculated using the formula: EL (%) = EC1initial conductivity/
EC2 total conductivity × 100 where EC1 and EC2 are in
microsiemens (μS).
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Data analysis and artworks

The data were subjected to Student’s t test, one-way analysis
of variance (ANOVA) at probability level P ≤ 0.05 (IBM
SPSS Statistics). Graphic artworks were done by using MS
Office Excel; the images were combined byMS Office Power
Point and sized by Windows 64 Bit Software IrfanView.

Chemicals

All chemicals (if not otherwise indicated) used for the assays
were purchased from Sigma-Aldrich Chemie B.V.,
Zwijndrecht, The Netherlands.

Results

Shelf life and tissue deterioration

The OVQ and the occurrence of browning in the ‘non-
bruised’ fresh-cuts were visually evaluated from day 1 to
day 9 of storage (Figs. 1 and 2). Yellowing and slight
browning near the cut edge and around the other injured
sites initially appeared on day 2 and the severity was
increasing until the end of shelf life (Figs. 1 a1, b–d and
2b). The first symptoms of senescence (slight yellowing
and minor loss of leaf turgor) in ‘non-bruised shreds’
were noticed around day 3 and in the following days the
fresh-cuts completely senesced (Fig. 2a). After about
7 days, the quality reached the limit of acceptability

(levels of OVQ below 5 and browning score below 3)
(Figs. 1b and 2a, b). On day 9, necrotic lesions consisting
of entirely disintegrated tissue were observed (Fig. 1d). At
some places inside the necrotic lesions and also in non-
necrotic senescing areas, the cells disappeared and this
was already noticed on day 7 (Fig. 1c, d). In ‘bruised
shreds’, rapid browning was observed at the cut edges
and at the bruised sites (Fig. 1a1 and 1b) and early cell
death was detected within the initially browning areas in a
narrow strip of tissue surrounding the wounds (Evans
Blue positive blue coloured cells) (Fig. 1a3). A symptom
of PCD occurring rapidly after the wounding was also the
increased level of H2O2 on day 2 (Fig. 1a2). The first
areas with senescing tissue in ‘bruised shreds’ appeared
distant of the wounded sites approximately 1 day after the
initiation of visible browning. Further, senescence in un-
wounded tissue of these shreds developed in a manner
similar to that in the ‘non-bruised’ shreds. Until the end
of shelf life, the browning in both groups of samples
remained confined to a zone bordering the cut edge and
in the vicinity to the local bruises (Fig. 1b–d). These data
showed that the wounding accelerates senescence in un-
wounded tissue and that, although with increasing sever-
ity, the browning deterioration developed only in vicinity
of wounded sites.

Chlorophyll loss

Red fluorescence of chlorophyll was visible by microscopy
and quantified as a decrease in pixel intensity (Figs. 3 and

Fig. 1 Senescence, wound-induced browning and cell death in lettuce
fresh-cuts, stored at 4 °C a1 Slight browning at the cut edge (non-
labelled tissue). a2 H2O2 production at the area showing initial
browning, DAB staining, chlorophyll removed—the tissue appears in
brown due to the presence of H2O2. a3 Cell death surrounding an
injured site; following Evans Blue staining the dead cells appear in blue
(a1–3), day 2. b Tissue browning in area adjacent a site injured with a

cork borer, day 4. c Senescing shred on day 7; note sites in which cells
have disappeared (arrows); inset shows area with vanished cells. d
Senescing shred on day 9; visible is severe browning close to the cut
edge, a large necrotic lesion of entirely necrotized tissue and
disappearance of cells inside and in vicinity to it (inset, arrows). Scale
bars = a2 500 μm, a3 50 μm, c (inset) 100 μm
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4). In freshly prepared fresh-cuts and after 1 day of storage,
chlorophyll loss was not yet observed (Figs. 3a, e and 4).
At later time points, the fluorescence gradually declined. A
decrease of chlorophyll in wounded and senescing areas
was very clear on day 4 of storage (Figs. 3b–d, f–h); chlo-
rophyll more rapidly disappeared at the cut edge and
bruised sites than in the non-wounded sites (Fig. 4). In
the samples taken from brown tissue surrounding, the
wounded sites (cut edge or bruises), on day 7 (end of shelf
life, images not shown), the fluorescence was almost
completely absent whereas in non-bruised senescing tissue
it remained detectable albeit with lower intensity (Fig. 4).
These observations showed that chlorophyll loss initially
was restricted to a small area around the wounds, whereas
senescence-associated chlorophyll breakdown in non-
wounded senescing tissues occurred over the whole leaf
area and was delayed in comparison to wounded sites.

Production of H2O2 and overall ROS

The generation of ROS, including H2O2 was analysed histo-
chemically by using specific labelling. DAB staining (forma-
tion of brown-coloured deposits) revealed massive H2O2 ac-
cumulation close to the cut edge. In bruised areas, H2O2

started to increase on day 2 (Fig. 1a2) and was well expressed
after 4 days of storage (Fig. 5d, i). The diminution of pixel
intensity (indicating H2O2 quantity) in the images supported
this observation (Fig. 7). In comparison to day 0, no difference
in H2O2 amount was detected on day 1. The level of H2O2 at
the cut edge was increasing with advancement of tissue brow-
ning and cell death in vicinity of the wounds (Figs. 2b, 5b, d
and 7). High levels of H2O2 were found also in xylem vessels
and in their neighbouring cells within injured sites (Figs. 5d
and 6h). These results pointed that enhanced H2O2 was con-
fined to wounded areas.

Fig. 2 Time course and severity of deterioration of lettuce fresh-cuts
stored at 4 °C a Overall visual quality (OVQ). b Browning severity.
Dashed lines indicate the lower limit of consumer acceptance. Presented
values are means ± SEM (n–1) (n = 20); 4 replicates per time point of fresh-

cut samples prepared from 5 lettuce heads in each of 5 independent
experiments. Data indicated with same letters do not differ significantly
from each other at P ≤ 0.05

Fig. 3 Microscopy observations on chlorophyll loss in senescing ‘non-
bruised’ and ‘bruised’ shreds of lettuce stored at 4 °C a Day 1 of storage.
b Senescing area, day 4. c Cut edge, day 4. d Bruised site, day 4. e–h
Fluorescence of chlorophyll in panels a–d, respectively. a–d Light

microscopy; e–h Fluorescent microscopy. At sites loosing chlorophyll
the red fluorescence is fading or not detectable. Scale bars = a and e
200 μm, b–d and f–h 100 μm
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Maximum production of H2O2 in senescing ‘non-bruised
shreds’was detected on day 4 and this did not change with the
progression of deterioration until day 7 (Figs. 6i, j and 7). At
the end of shelf life, however, H2O2 remained lower in
senescing tissue than at the cut edge and at otherwise wounded
tissue (Fig. 7). This suggested that with advancement of se-
nescence at certain time point, the capacity of senescing cells
to produce H2O2 might diminish.

The labelling with DCF-DA resulted in clearly distin-
guishable green fluorescence indicating substantial in-
crease in the generation of overall ROS at the cut edge
and in bruised sites (Fig. 5e, j). In comparison to fresh
tissue at day 1 (Fig. 6d), ROS accumulation was spread
over larger area by day 4 (Fig. 6e). These observations
showed that enhanced generation of H2O2 and other ROS
occurs close to the sites of injury and in senescing tissue.
In general, the massive ROS, including H2O2, were de-
tected in the cells most probably determined to die (Figs.
5b–d, g–i and 6i, j, n, o).

Electrolyte leakage

The measurement of electrolyte leakage showed that the cell
death in wounded and senescing sites was accompanied with
an increase in electrolyte leakage (Fig. 8). It proceeded
concomitantly with chlorophyll loss, browning and the
augmentation of H2O2 and overall ROS production. On day
1 of storage, the electrolyte leakage in all samples was still
similar to that of the initial samples (day 0). At day 4 and day
7, electrolyte leakage was lowest in the senescing areas
(showing yellowing) and highest in the wounded areas (cut
edge and bruised sites, showing browning) (Fig. 8). These
data indicated that senescing and wounded cells of lettuce
fresh-cuts were undergoing cell death, of which the electrolyte
leakage is well recognised marker of compromised membrane
integrity.

Fig. 4 Fluorescence of chlorophyll at wounded and senescing sites of
lettuce fresh-cuts stored at 4 °C Fluorescence is quantified by pixel
intensity. Initial value (day 0) is shown as dotted line. Presented values
are means ± SEM (n–1), (n = 25). Quantification was done in 5 non-
overlapping microscopy fields in each of at least 5 representative
micrographs collected from 3 independent experiments; each separate
experiment was carried out with fresh-cut samples prepared from 5
lettuce heads. Data indicated with same letters do not differ
significantly from each other at P ≤ 0.05

Fig. 5 Wound-induced cell death response in lettuce fresh-cuts stored at
4 °C a Evans Blue stained cut edge; the lack of blue coloured tissue
indicates a lack of dead cells day 1. b Evans Blue stained dead cells at
the cut edge; note the blue stained tissue, day 4. c PI stained dead cells in
vicinity to cut edge, day 4; note the PI positive (red fluorescing)
condensed nuclei. d H2O2 accumulation in vicinity to cut edge, day 4;
DAB staining; note the brown coloured deposits. e Accumulation of
overall ROS in vicinity to cut edge, day 4. DCF-DA staining; note the
green fluorescence. fEvans Blue stained bruised leaf area; no blue labeled

dead cells are detected, day 1. g Evans Blue stained bruised area; visible
are dead cells with shrunken protoplast (in blue), day 4. h PI stained
nuclei (bright red fluorescence) in dead cells in bruised area, day 4. i
H2O2 accumulation in cells with shrunken protoplasts in bruised area;
note the brown DAB deposits, day 4. j ROS accumulation (green
fluorescing cloud) in bruised area, day 4; DCF-DA staining. a, b, d, f,
g and i Light microscopy; c, e, h and j Fluorescent microscopy. dc Dead
cell, n Nucleus, p Protoplast, s Stoma, v Vessel. Scale bars = a–e, i and j
100 μm, f–h 50 μm
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Morphological occurrence of cell death

The dead cells were identified following the staining with
Evans Blue and PI. Evans Blue positive dead cells were
coloured in blue; PI positive nuclei in the dead cells emitted
bright red fluorescence. After 1 day of storage, no dead cells
were detected at the cut edge, bruised sites and non-wounded
tissue (Figs. 5a, f and 6a, k). After 2 days of storage, cell death
occurred in relatively low number of cells within the slightly
browning area adjacent the wounded sites and this was ac-
companied with slightly elevated H2O2 level (Figs. 1a1, a2,
a3).). Four days after cutting, most of the cells in the narrow
zone close to the cut edge and at the sites of bruising were
positive against Evans Blue and PI (Fig. 5b, c, g, h). In non-
wounded areas of ‘non-bruised’ shreds, the cell death occurred
throughout the entire senescing tissue (Fig. 6n, o) starting
approximately a day later than in ‘bruised shreds’.

Propidium iodide-positive cells showed clear signs of
condensed nuclei (Figs. 5c, h and 9d). Evans Blue stain-
ing revealed shrunken protoplasts separated from the cell

Fig. 7 Production of H2O2 in senescing and wounded lettuce fresh-cuts
stored at 4 °C The amount of H2O2 is quantified by pixel intensity of
DAB deposits. Initial value (day 0) is shown as dotted line. Presented
values are means ± SEM (n–1), (n = 25). Quantification was done in 5 non-
overlapping microscopy fields in each of at least 5 representative
micrographs collected from 3 independent experiments; each separate
experiment was carried out with fresh-cut samples prepared from 5
lettuce heads. Data indicated with same letters do not differ
significantly from each other at P ≤ 0.05

Fig. 6 Cell death in senescing lettuce fresh-cuts stored at 4 °C a Non-
senescing area, day 1; on the right of the vessel—part of the fresh-cut with
intact epidermis; on the left - the mesophyll layer with epidermis
removed. b Living trichome, day 1. c Dead trichomes, day 4. a–c
Chlorophyll removed. d Overall ROS (green fluorescence) in non-
senescing area; the red fluorescence is emitted from chlorophyll in the
living cells, day 1. eOverall ROS in senescing area, day 4. fH2O2 in non-
senescing area; H2O2 is detectable by the brown DAB labelling inside the
vessels, day 1. g H2O2 in dead trichome and in epidermal cells
underneath; note the brown DAB deposits, day 2. h H2O2 in dead
trichomes; xylem vessel heavily loaded with H2O2, day 4. i H2O2 in
senescing area, day 4. j H2O2 in senescing area, day 7. i and j—note

the spread and increasing intensity of the brown coloration. k Evans
Blue stained non-senescing area; blue coloured dead cells are not
detectable, day 1. l Dead cells in trichome; note the dead Evans Blue
positive (blue) cells in the upper part and the living cells (Evans Blue
negative) at the base of trichome, day 2.m Evans Blue stained dead cells
in several dead trichomes and in the connected epidermal cells, day 4. n
Cell death in senescing area, day 4. o Cell death in senescing area, day
7. a–c and f–o Light microscopy; d and e Fluorescence microscopy. d
and e DCF-DA staining. f–j DAB staining. k–o Evans Blue staining. e
Epidermis, m Mesophyll, s Stoma, t Trichome, v Vessel. Scale bars =
100 μm
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walls both in the dead epidermal and in some of the dead
mesophyll cells (Figs. 5g and 9b–c). Hydrogen peroxide
remained within the shrunken protoplast (Fig. 9a). These
features suggested necrotic type of PCD. Some of the
cells appeared empty, Evans Blue negative (Fig. 9a–c).
In the empty cells, H2O2 was not distinguishable by
brown DAB deposits (Fig. 9a). The observations sug-
gested that some of the cells might undergo vacuolar
PCD, some might express necrotic and maybe others ex-
press mixed cell death phenotype.

Role of trichomes in wound-induced senescence

On day 1 of storage epidermal and mesophyll tissue of
non-bruised fresh-cuts consisted of living cells (Fig. 6a, k)
and the trichomes contained only living cells (Fig. 6b).
On day 2, it was noticed that before any visible signs of

senescence, the cells in the upper part of single trichomes
in ‘non-bruised’ shreds were apparently dead (Evans Blue
positive) (Fig. 6l). At the base of same trichomes, the
cells were Evans Blue negative. After 4 days of storage
at senescing sites, the number of entirely dead trichomes
increased (Fig. 6c, m) and dead (blue coloured) cells ap-
peared also in the connecting epidermal tissue (Fig. 6m).
The cell death progressed (Fig. 6n) and on day 7 most of
the cells in epidermis and parenchyma were dead (Fig.
6o). Cell death advancement in trichomes and connecting
tissue (Fig. 6l, m) was accompanied with H2O2 accumu-
lation (brown DAB deposits) that further spread over the
whole senescing area (Fig. 6g–j). These observations sug-
gested that in fresh-cuts, the trichomes at sites distant from
the primary wound sites may be the first to respond to and
propagate the long distance wound signal.

Discussion

Our earlier study suggested that wound stress-induced brow-
ning in lettuce fresh-cuts is associated with PCD symptoms
(Iakimova and Woltering 2015). Here, we report further find-
ings on morphological characterisation and signalling in
wound-induced PCD. Most of the dead cells in the wounded
and in non-injured (senescing) areas showed compacted nu-
clei and shrunken protoplast (retracted from cell wall). Some
of the cells appeared empty suggesting that probably these are
empty corpses remaining after autolysis of cellular content.
Cell disappearance in the tissue undergoing highly advanced
senescence substantiates the observations of Wagstaff et al.
(2007) for vanishing cells in senescing detached leaves of
postharvest lettuce heads. The observed cell death phenotypes
resembling necrotic and vacuolar cell death classes suggested
shared components of wound-induced cell death, senescence
and HR PCD in lettuce. For example, phenotypic expression

Fig. 8 Electrolyte leakage of tissue discs from wounded (cut edge and
bruised sites) and non-wounded areas in lettuce fresh-cuts, stored at 4 °C
Presented values are means ± SEM (n–1), (n = 9). At each time point,
samples (15 leaf discs) were randomly taken from fresh-cuts from 3
boxes in three independent experiments with fresh-cuts prepared from 5
lettuce heads. Data indicated with same letters do not differ significantly
from each other at P ≤ 0.05

Fig. 9 Expression of programmed cell death phenotype in wounded and
senescing cells in lettuce fresh-cuts, stored at 4 °C aDead epidermal cells
(with accumulated H2O2) at the cut surface, DAB staining; note the
brown coloured protoplasts. b Dead epidermal cells in senescing fresh-
cut, Evans Blue staining. c Dead mesophyll cells in senescing fresh-cut
(epidermis removed), Evans Blue staining. d PI stained condensed nuclei

(bright red fluorescence) in dead cells in senescing sites. a–c Note the
shrunken protoplast retracted from the cell wall and b, d Condensed
nuclei. a–c Some of the cells appear empty, DAB and Evans Blue
negative. Samples were taken on day 4 of storage. cw Cell wall, dc
Death cell, ec Empty cell, lc Living cell, n Nucleus, p Protoplast, t
Trichome. Scale bars = 100 μm
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(e.g. protoplast shrinkage) of the dead cells together with ac-
tivation of caspase 3-like protease and other elements of ne-
crotic PCD are documented in pathogen challenged detached
lettuce leaves and non-headed Chinese cabbage (Kiba et al.
2006, 2009; Li et al. 2006) whereas symptoms of vacuolar cell
death are described in senescing lettuce leaves and in fresh-
cuts subjected to high pressure stress (Wagstaff et al. 2007;
Zhang et al. 2015). The changes in plasmamembrane integrity
and chlorophyll breakdown are markers of senescence and
cell death in response to various stresses (Dhindsa et al.
1981; van Doorn and Woltering 2004; Lim et al. 2007; Song
et al. 2012). Postharvest senescence in vegetable fresh-cuts
suffering of storage-induced disorders, e.g. chilling injury, is
also accompanied by membrane disruption and chlorophyll
degradation (Artés et al. 2007; Hodges and Toivonen 2008;
Saltveit 2002; Pedreschi and Lurie 2015; Pareek 2016). The
observed in our experimental system increase in membrane
permeability (electrolyte leakage) and chlorophyll loss indi-
cate similarity between senescence and wound-induced cell
death. The occurrence of dead cells of both phenotypes and
the other detected physiological and biochemical markers of
PCD in wounded and senescing tissue led to the assumption
that part of the cells in lettuce fresh-cuts may undergo necrotic
cell death and others may die in a manner of vacuolar cell
death.

The biological role of the local wound-induced PCD in the
vicinity of injured sites has been compared to the HR; both
processes aimed at preventing the runaway spread of cell
death (Cui et al. 2013; McCabe 2013). Our observations that
cell death in lettuce fresh-cuts occurred quickly in the tissue
close to the wound suggest that, in this system, PCD may
function as a defence mechanism in order to rapidly seal-off
the injury by physically separating the damaged from the
healthy tissue with a layer of dead cells. In addition to the
involvement of phenolics in the development of browning, it
is thought that accumulation of polymerised phenolic com-
pounds such as callose, suberin or lignin can play a role in
building a physical barrier against propagating cell death re-
sponse (Cui et al. 2013). Among the factors that are able to
prevent the spreading of wound-induced death from the pri-
mary site of wounding throughout the rest of tissue is H2O2

which, apart from its role in PCD signalling (Levine et al.
1994; Jabs 1999; Neill et al. 2002), is involved also in path-
ways responsible for synthesis of antioxidant compounds that
help the cells to cope with wound stress and can contribute to
the strengthening of cell walls by participating in the cross-
linking of its constituents (Cui et al. 2013; Tisi et al. 2008 and
references therein).

Oxidative stress is involved in wound and other stress re-
sponses and is a substantial component of the PCD process
(Jabs 1999; Sakamoto et al. 2005; Gill and Tuteja 2012).
Hydrogen peroxide is recognised as localised mobile cell
death factor in the HR PCD and in local wound signalling

(Levine et al. 1994, 1996; León et al. 2001). We observed that
the accumulation of H2O2 and other ROS corresponded to the
advancement of browning and cell death at wounded sites.
Obviously the oxygen species were produced in the wounded
and in their neighbouring cells; additionally H2O2 may have
diffused from the injured xylem vessels inside the area of
cutting or bruising. This shows that ROS definitely contribute
to the browning-associated confined wound response through
mediating the cell death at the primary site of injury.
Regarding the local cell death signalling, it is interesting to
note that the presumed wound-induced primary signal mole-
cules such as lysophospholipids (García et al. 2017) have
previously been associated with the induction of cell death
(necrotic PCD) in tomato cell cultures (Yakimova et al.
2006; Iakimova et al. 2013). The observed localised cell death
at the wound site in fresh-cut lettuce may be triggered by these
compounds. It addition, it is notable that a role of
phosphatidylserine and its derivative lysophosphatidylserine
is documented in animal cells undergoing apoptosis. These
substances are involved in early apoptotic pathways and are
also exposed on the outer surface of plasma membrane as a
signal to phagocytes for recognising the apoptotic cells, thus
promoting the phagocytosis—a process occurring in animal
systems for removal of the remnants of apoptotic cells by
macrophages (Denecker et al. 1999; Frasch and Bratton
2012).

The local browning, ROS production and cell death in
wounded tissue occurred a day earlier than the first visible
symptoms of senescence in non-wounded areas. In the later
time points, ROS generation accompanied the course of se-
nescence at the distant sites. Moreover, in comparison to the
rapid increase of electrolyte leakage and chlorophyll loss at
wounded sites, in non-injured tissue, these changes were de-
layed and expressed with lower severity. This suggested that
ROS synthesis and the sequential senescence/cell death in
non-wounded sites might be induced by a long-distance
wound signal generated at the site of damage and transmitted
toward the remote cells.

Potential players in long-distance stress communication,
including wound signalling are jasmonic acid (JA), salicylic
acid (SA), ethylene, NO, peptide messengers such as
systemin, Ca2+-dependent pathways, MAPkinases, phospho-
lipase A2, linoleic acid, octadecanoid pathways and electrical
waves (López-Gálvez et al. 1996b; Ryan 2000; León et al.
2001; Campos-Vargas and Saltveit 2002; McCabe 2013).
However, these factors might not operate collectively in the
various stress situations and may function also as short-
distance stress messengers. For example, Cui et al. (2013)
assumed that wound-induced cell death is independent of
SA, JA and ethylene but is related to abscisic acid (ABA).
They found that ROS production is associated with ABA-
stimulated local wound-induced cell death and showed that
ABA additionally contributes to the spread of cell death away
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from the wound. The same authors also reported that the ex-
tent of dissemination of cell death is under control of the
transcription factor BOTRYTIS SENSITIVE1/MYB108
which acts as a negative regulator of ABA production, hence
preventing ABA-related long-distance wound signalling and
limiting cell death to cells adjacent the wounds.

An intriguing question is how the senescence-inducing
wound signalling was broadcasted to the unwounded parts
of the lettuce fresh-cuts. We found that the first dead cells in
non-injured areas appeared in trichomes. This was preceded
by H2O2 accumulation in trichome cells. Further, H2O2 was
intensively produced in the epidermal cells immediately con-
nected to the respective trichomes and thereafter spread
toward parenchyma. The cell death progression followed the
same sequence. This suggested that trichomes might be the
first structures distant from the wounded site that possibly can
perceive a mobile signal generated in response to wound
stress. In a model pathosystems, Wang et al. (2009) showed
that trichomes can convey and incorporate external stress sig-
nals into intrinsic cellular pathways. These authors demon-
strated that treatment of trichomes in tobacco leaves with the
protein elicitor ParA1 from Phytophthora parasitica var.
nicotianae activated HR PCD pathways occurring sequential-
ly in trichomes and in the epidermal and mesophyll cells. An
increase of H2O2 level was detected initially in the upper cell
of trichome; next the H2O2 appeared in the lower trichome
cells and thereafter in the connected epidermal and
neighbouring mesophyll tissue. Our observations showed
similar order of H2O2 production first in trichomes and later
in the epidermal and mesophyll cells. This provides informa-
tion suggesting that trichomes might participate in wound re-
sponse of lettuce fresh-cuts by sensing and transmitting a
long-distance wound signal which stimulates oxidative stress

and additional events leading to cellular senescence (PCD). In
support to our assumption is the discovery that Arabidopsis
thaliana trichomes may function as mechanosensory system
by sensing even slight folding, bruising, pressing or vibrations
caused by insects touching the leaf surface or flying over it.
Such disturbances were shown to induce changes in cytosolic
Ca2+ and shift of pH toward alkaline state which in turn con-
tributes to activation of pathways related to synthesis of plant
defence toxins (Zhou et al. 2017). Another work suggested
that tomato glandular trichomes can detect physical activity
on the leaf surface and activate JA and H2O2 associated pro-
cesses (Tooker et al. 2010). In velvet bean (Mucuna pruriens),
insect-provoked mild mechanical stress has stimulated gene
expression of a protein, containing domains belonging to pa-
pain family of cysteine proteases (Singh and Dhawan 2017).
These proteases are known to be involved in diverse defence
responses, HR and other PCD processes (Woltering 2010).
The putative mobile signal that may potentiate senescence/
cell death cascade at sites remote from the wounded lettuce
tissue remains to be further elucidated.

Conclusions

Our previous and current studies soundly indicate that PCD is
an integral part of wound-associated browning disorder in
lettuce fresh-cuts. Here, we present detailed characteristic of
morphological, physiological and biochemical processes un-
derlying the wound PCD response in this vegetable model.
The morphological features of the dead cells (shrunken proto-
plasts and condensed nuclei, but also the appearance of empty
corpses), together with H2O2 and overall ROS accumulation,
compromised integrity of cellular membrane (electrolyte

Fig. 10 Schematic illustration of PCD involvement in the wound
response in fresh-cut lettuce. Wounding (at the cut edge or bruised
sites) involves the production of lysophospholipids (such as LPA,
lysophosphatidic acid; LPS; lysophosphatidylserine; LPI,
lysophosphatidylinositol) and causes rapid browning confined to the
area surrounding the injured tissue. Browning is associated with
massive cell death, H2O2 and general ROS accumulation, electrolyte

leakage and chlorophyll loss. Dead cells mostly resemble necrotic PCD
phenotype (shrunken protoplast). Dying cells generate signal molecules
that travel over greater distances to cause ROS and cell death at distant
sites; first in trichomes and subsequently in the connecting epidermal and
mesophyll cells. In addition to necrotic PCD also vacuolar PCD (leaving
empty cell corpses behind) and the complete disappearance of cells are
observed. cw Cell wall, n Nucleus, pp. Protoplast
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leakage) and presumable photosynthesis decline (chlorophyll
loss) in both wounded and senescing sites pointed to cell death
resembling a mixture of necrotic and vacuolar PCD types. The
quick occurrence of cell death in vicinity of the wounds sug-
gested that PCD may contribute to restricting the damage to
the primary site of wounding by serving as a mechanism for
building a physical barrier of dead cells between the injured
and healthy tissue. The wound stress accelerated senescence
in non-wounded tissue most probably through long-distance
wound signalling. Trichomes in non-wounded sites were the
first to show H2O2 accumulation and cell death followed by
cell death in connecting epidermal tissue and consecutive se-
nescence over larger area. This suggested a possible role of
trichomes in mediating senescence/cell death at sites remote
from the wounds (Fig. 10).

The findings add new information for the role of PCD in
wound response in lettuce fresh-cuts and may open a path
toward studies for controlling the deterioration in postharvest
leafy vegetables through specifically targeting the PCD
events.
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