Skip to main content
Log in

Induction of reactive oxygen species and the potential role of NADPH oxidase in hyperhydricity of garlic plantlets in vitro

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Hyperhydricity is a physiological disorder associated with oxidative stress. Reactive oxygen species (ROS) generation in plants is initiated by various enzymatic sources, including plasma membrane-localized nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, cell wall-bound peroxidase (POD), and apoplastic polyamine oxidase (PAO). The origin of the oxidative burst associated with hyperhydricity remains unknown. To investigate the role of NADPH oxidases, POD, and PAO in ROS production and hyperhydricity, exogenous hydrogen peroxide (H2O2) and inhibitors of each ROS-producing enzyme were applied to explore the mechanism of oxidative stress induction in garlic plantlets in vitro. A concentration of 1.5 mM H2O2 increased endogenous ROS production and hyperhydricity occurrence and enhanced the activities of NADPH oxidases, POD, and PAO. During the entire treatment period, NADPH oxidase activity increased continuously, whereas POD and PAO activities exhibited a transient increase and subsequently declined. Histochemical and cytochemical visualization demonstrated that specific inhibitors of each enzyme effectively suppressed ROS accumulation. Moreover, superoxide anion generation, H2O2 content, and hyperhydric shoot frequency in H2O2-stressed plantlets decreased significantly. The NADPH oxidase inhibitor was the most effective at suppressing superoxide anion production. The results suggested that NADPH oxidases, POD, and PAO were responsible for endogenous ROS induction. NADPH oxidase activation might play a pivotal role in the oxidative burst in garlic plantlets in vitro during hyperhydricity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CaCl2 :

Calcium chloride

CBA:

Sodium cacodylate

CeCl3 :

Cerous chloride

DAB:

3,3-Diaminobenzidine

DPI:

Diphenylene iodonium

DTT:

dl-Dithiothreitol

EDTA:

Ethylene diamine tetraacetic acid

EGTA:

Ethylene glycol tetraacetic acid

GUA:

Guazatine

H2O2 :

Hydrogen peroxide

IWF:

Infiltrated washing fluid

KCl:

Potassium chloride

KH2PO4 :

Monopotassium phosphate

KI:

Potassium iodide

MOPS:

3-[N-morpholino] propanesulfonic acid

NADPH:

Nicotinamide adenine dinucleotide phoshate

NaN3 :

Sodium azide

NBT:

Nitro blue tetrazolium

O2 :

Superoxide anion

O2 :

Singlet oxygen

PAO:

Polyamine oxidase

PEG:

Polyethylene glycol

pH:

Potential of hydrogen

PMSF:

Phenylmethylsulfonyl fluoride

POD:

Peroxidase

PVP:

Polyvinylpyrrolidone

ROS:

Reactive oxygen species

TCA:

Trichloroacetic acid

XTT:

3′-[1-[Phenylamino-carbonyl]-3,4-tetrazolium]-bis(4-methoxy-6-nitro) benzenesulfonic acid hydrate

References

  • Angelini R, Tisi A, Rea G, Chen MM, Botta M, Federico R, Cona A (2008) Involvement of polyamine oxidase in wound healing. Plant Physiol 146(1):162–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayabe M, Sumi S (1998) Establishment of a novel tissue culture method, stem-disc culture, and its practical application to micropropagation of garlic (Allium sativum L.). Plant Cell Rep 17(10):773–779

    Article  CAS  Google Scholar 

  • Balen B, Tkalec M, Pavoković D, Pevalek-Kozlina B, Krsnik-Rasol M (2008) Growth conditions in in vitro culture can induce oxidative stress in Mammillaria gracilis tissues. J Plant Growth Regul 28(1):36–45. doi:10.1007/s00344-008-9072-5

    Article  Google Scholar 

  • Bestwick CS, Brown IR, Bennett M, Mansfield JW (1997) Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola. Plant Cell Online 9(2):209–221

    Article  CAS  Google Scholar 

  • Bindschedler LV, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, Denoux C, Hayes T, Gerrish C, Davies DR, Ausubel FM, Bolwell GP (2006) Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J: Cell Mol Biol 47(6):851–863. doi:10.1111/j.1365-313X.2006.02837.x

    Article  CAS  Google Scholar 

  • Bolwell PP, Page A, Piślewska M, Wojtaszek P (2001) Pathogenic infection and the oxidative defences in plant apoplast. Protoplasma 217(1–3):20–32

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254

    Article  CAS  PubMed  Google Scholar 

  • Chung HJ, Robert JF (1999) Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment. Plant Physiol 121:429–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daudi A, Cheng Z, O’Brien JA, Mammarella N, Khan S, Ausubel FM, Bolwell GP (2012) The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell 24(1):275–287. doi:10.1105/tpc.111.093039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dewir YH, Chakrabarty D, Ali MB, Hahn EJ, Paek KY (2006) Lipid peroxidation and antioxidant enzyme activities of Euphorbia millii hyperhydric shoots. Environ Exp Bot 58(1–3):93–99. doi:10.1016/j.envexpbot.2005.06.019

    Article  CAS  Google Scholar 

  • Díaz-Vivancos P, Rubio M, Mesonero V, Periago PM, Barceló AR, Martínez-Gómez P, Hernández JA (2006) The apoplastic antioxidant system in Prunus: response to long-term plum pox virus infection. J Exp Bot 57(14):3813–3824

    Article  PubMed  Google Scholar 

  • Dobránszki J, Magyar-Tábori K, Tombácz E (2011) Comparison of the rheological and diffusion properties of some gelling agents and blends and their effects on shoot multiplication. Plant Biotechnol Rep 5(4):345–352. doi:10.1007/s11816-011-0188-x

    Article  Google Scholar 

  • Fernandez-García N, Piqueras A, Olmos E (2008) Sub-cellular location of H2O2, peroxidases and pectin epitopes in control and hyperhydric shoots of carnation. Environ Exp Bot 62(2):168–175. doi:10.1016/j.envexpbot.2007.08.004

    Article  Google Scholar 

  • Fernandez-Garcia N, de la Garma JG, Olmos E (2011) ROS as biomarkers in hyperhydricity. reactive oxygen species and antioxidants in higher plants:249–274

  • Franck T, Kevers C, Penel C, Greppin H, Hausman JF, Gaspar T (1998) Reducing properties, and markers of lipid peroxidation in normal and hyperhydrating shoots of Prunus avium L. J Plant Physiol 153(3–4):339–346. doi:10.1016/s0176-1617(98)80160-0

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50(1):151–158. doi:10.1016/0014-4827(68)90403-5

    Article  CAS  PubMed  Google Scholar 

  • Hassannejad S, Bernard F, Mirzajani F, Gholami M (2012) SA improvement of hyperhydricity reversion in Thymus daenensis shoots culture may be associated with polyamines changes. Plant Physiol Biochem : PPB / Societe francaise de physiologie vegetale 51:40–46. doi:10.1016/j.plaphy.2011.10.006

    Article  CAS  Google Scholar 

  • Helou L, Harris IM (2007) Garlic herbal products. Springer, p 123–149

  • Hernández JA, Ferrer MA, Jiménez A, Barceló AR, Sevilla F (2001) Antioxidant systems and O2 .- /H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127(3):817–831

    Article  PubMed  PubMed Central  Google Scholar 

  • Ivanova M, Staden J (2010) Influence of gelling agent and cytokinins on the control of hyperhydricity in Aloe polyphylla. Plant Cell Tissue Organ Cult (PCTOC) 104(1):13–21. doi:10.1007/s11240-010-9794-5

    Article  Google Scholar 

  • Jabs T, Dietrich RA, Dangl JL (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273(5283):1853–1856

    Article  CAS  PubMed  Google Scholar 

  • Keller EJ, Senula A (2013) Micropropagation and cryopreservation of garlic (Allium sativum L.) Protocols for micropropagation of selected economically-important horticultural plants. Springer, p 353–368

  • Kevers C, Franck T, Strasser RJ, Dommes J, Gaspar T (2004) Hyperhydricity of micropropagated shoots: a typically stress-induced change of physiological state. Plant Cell Tissue Org Cult 77(2):181–191

    Article  Google Scholar 

  • Kim E, Hahn E, Murthy H, Paek K (2003) High frequency of shoot multiplication and bulblet formation of garlic in liquid cultures. Plant Cell Tissue Org Cult 73(3):231–236

    Article  Google Scholar 

  • Liszkay A, Kenk B, Schopfer P (2003) Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta 217(4):658–667

    Article  CAS  PubMed  Google Scholar 

  • Luciani GF, Mary AK, Pellegrini C, Curvetto NR (2006) Effects of explants and growth regulators in garlic callus formation and plant regeneration. Plant Cell Tissue Org Cult 87(2):139–143. doi:10.1007/s11240-006-9148-5

    Article  CAS  Google Scholar 

  • Malik B, Pirzadah TB, Tahir I, Rehman RU, Hakeem KR, Abdin M (2014) Plant signaling: response to reactive oxygen species plant signaling: understanding the molecular crosstalk. Springer, p 1–38

  • Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17(1):9–15. doi:10.1016/j.tplants.2011.10.001

    Article  CAS  PubMed  Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49(1):69–76

    Article  CAS  Google Scholar 

  • Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2(84):ra45

    Article  PubMed  Google Scholar 

  • O’Brien JA, Daudi A, Butt VS, Bolwell GP (2012a) Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta 236(3):765–779. doi:10.1007/s00425-012-1696-9

    Article  PubMed  Google Scholar 

  • O’Brien JA, Daudi A, Finch P, Butt VS, Whitelegge JP, Souda P, Ausubel FM, Bolwell GP (2012b) A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMP-elicited defense. Plant Physiol 158(4):2013–2027

    Article  PubMed  PubMed Central  Google Scholar 

  • Pourrut B, Perchet G, Silvestre J, Cecchi M, Guiresse M, Pinelli E (2008) Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots. J Plant Physiol 165(6):571–579

    Article  CAS  PubMed  Google Scholar 

  • Ramírez-Malagón R, Pérez-Moreno L, Borodanenko A, Salinas-González GJ, Ochoa-Alejo N (2006) Differential organ infection studies, potyvirus elimination, and field performance of virus-free garlic plants produced by tissue culture. Plant Cell Tissue Org Cult 86(1):103–110. doi:10.1007/s11240-006-9102-6

    Article  Google Scholar 

  • Ranieri A, Castagna A, Baldan B, Soldatini GF (2001) Iron deficiency differently affects peroxidase isoforms in sunflower. J Exp Bot 52(354):25–35

    Article  CAS  PubMed  Google Scholar 

  • Ried K, Frank OR, Stocks NP (2013) Aged garlic extract reduces blood pressure in hypertensives: a dose–response trial. Eur J Clin Nutr 67(1):64–70. doi:10.1038/ejcn.2012.178

    Article  CAS  PubMed  Google Scholar 

  • Sagi M, Fluhr R (2001) Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol 126(3):1281–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagi M, Davydov O, Orazova S, Yesbergenova Z, Ophir R, Stratmann JW, Fluhr R (2004) Plant respiratory burst oxidase homologs impinge on wound responsiveness and development in Lycopersicon esculentum. Plant Cell Online 16(3):616–628

    Article  CAS  Google Scholar 

  • Saher S, Piqueras A, Hellin E, Olmos E (2005) Prevention of hyperhydricity in micropropagated carnation shoots by bottom cooling: implications of oxidative stress. Plant Cell Tissue Org Cult 81(2):149–158

    Article  Google Scholar 

  • Sen A, Alikamanoglu S (2013) Antioxidant enzyme activities, malondialdehyde, and total phenolic content of PEG-induced hyperhydric leaves in sugar beet tissue culture. In Vitro Cell Dev Biol Plant 49(4):396–404

    Article  CAS  Google Scholar 

  • Šimonovičová M, Huttová J, Mistrík I, Široká B, Tamás L (2004) Peroxidase mediated hydrogen peroxide production in barley roots grown under stress conditions. Plant Growth Regul 44(3):267–275

    Article  Google Scholar 

  • Sivanesan I, Song JY, Hwang SJ, Jeong BR (2010) Micropropagation of Cotoneaster wilsonii Nakai—a rare endemic ornamental plant. Plant Cell Tissue Organ Cult (PCTOC) 105(1):55–63. doi:10.1007/s11240-010-9841-2

    Article  Google Scholar 

  • Tabart J, Franck T, Kevers C, Dommes J (2015) Effect of polyamines and polyamine precursors on hyperhydricity in micropropagated apple shoots. Plant Cell Tissue Organ Cult (PCTOC) 120(1):11–18

    Article  CAS  Google Scholar 

  • Tanou G, Molassiotis A, Diamantidis G (2009) Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environ Exp Bot 65(2–3):270–281. doi:10.1016/j.envexpbot.2008.09.005

    Article  CAS  Google Scholar 

  • Tian J, Jiang F, Wu Z (2015) The apoplastic oxidative burst as a key factor of hyperhydricity in garlic plantlet in vitro. Plant Cell Tissue Organ Cult (PCTOC) 120(2):571–584. doi:10.1007/s11240-014-0623-0

    Article  CAS  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    Article  CAS  Google Scholar 

  • van den Dries N, Gianni S, Czerednik A, Krens FA, de Klerk GJ (2013) Flooding of the apoplast is a key factor in the development of hyperhydricity. J Exp Bot 64(16):5221–5230. doi:10.1093/jxb/ert315

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu YX, von Tiedemann A (2002) Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone. Environ Pollut 116(1):37–47. doi:10.1016/s0269-7491(01)00174-9

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Chen LJ, Long YJ (2009) Analysis of ultrastructure and reactive oxygen species of hyperhydric garlic (Allium sativum L.) shoots. In Vitro Cellular Dev Biol Plant 45(4):483–490. doi:10.1007/s11627-008-9180-8

    Article  Google Scholar 

  • Yan F, Zhu Y, Müller C, Zörb C, Schubert S (2002) Adaptation of H+-pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiol 129(1):50–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Zhang F, He W, Wang X, Zhang L (2003) Iron-mediated inhibition of H+-ATPase in plasma membrane vesicles isolated from wheat roots. Cell Mol Life Sci CMLS 60(6):1249–1257

    Article  CAS  PubMed  Google Scholar 

  • Yoda H, Yamaguchi Y, Sano H (2003) Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants. Plant Physiol 132(4):1973–1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoda H, Hiroi Y, Sano H (2006a) Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells. Plant Physiol 142(1):193–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoda H, Hiroi Y, Sano H (2006b) Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells. Plant Physiol 142(1):193–206. doi:10.1104/pp.106.080515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31372056) and Doctoral Fund of Ministry of Education of China (200803071012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Wu.

Additional information

Handling Editor: Néstor Carrillo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Cheng, Y., Kong, X. et al. Induction of reactive oxygen species and the potential role of NADPH oxidase in hyperhydricity of garlic plantlets in vitro. Protoplasma 254, 379–388 (2017). https://doi.org/10.1007/s00709-016-0957-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-016-0957-z

Keywords

Navigation