Skip to main content
Log in

Programmed cell death during floral nectary senescence in Ipomoea purpurea

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The nectaries of Ipomoea purpurea wilt in the late flowering period. The senescence process of nectaries is frequently associated with cell lysis. In this paper, various techniques were used to investigate whether programmed cell death (PCD) was involved in the senescence process of nectaries in I. purpurea. Ultrastructural studies showed that nectary cells began to undergo structural distortion, chromatin condensation, mitochondrial membrane degradation, and vacuolar-membrane dissolution and rupture after bloom. 4′,6-Diamidino-2-phenylindole (DAPI) and terminal deoxynucleotidyl transferase-mediated 2′-deoxyuridine-5′-triphosphate (dUTP) nick end-labeling (TUNEL) assay showed that nectary cell nuclear DNA began to degrade during the budding stage, and disappeared in the fruiting stage. DNA gel electrophoresis showed that degradation of DNA was random. Together, these results suggest that PCD participate in the senescence of the nectary in I. purpurea. PCD began during the budding period, followed by significant changes in nectary morphology and structure during the flowering period. During the fruiting stage, the PCD process is complete and the nectary degrades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DAPI:

4′,6-Diamidino-2-phenylindole

PCD:

Programmed cell death

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling

References

  • Arunika HL, Gunawardena AH, Greenwood JS, Dengler NG (2004) Programmed cell death remodels lace plant leaf shape during development. The Plant Cell 16:60–73

    Article  CAS  Google Scholar 

  • Coimbra S, Torrão L, Abreu I (2004) Programmed cell death induces male sterility in Actinidia deliciosa female flowers. Plant Physiol Biochem 42:537–541

    Article  PubMed  CAS  Google Scholar 

  • Cronquist A (1981) An integrated system of classification of flowering plants. Columbia University Press, New York

    Google Scholar 

  • Cui KM (2007) Plant developmental biology. Peking University Press, Beijing, p 29

    Google Scholar 

  • Davis AR, Gunning BE (1992) The modified stomata of the floral nectary of Vicia faba L. development, anatomy and ultrastructure. Protoplasma 166:134–152

    Article  Google Scholar 

  • Davis AR, Peterson RL, Shuel RW (1988) Vasculature and ultrastructure of the floral and stipular nectaries of Vicia faba (Leguminosae). Can J Bot 66:1435–1448

    Article  Google Scholar 

  • Drew MC, He CJ, Morgan PW (2000) Programmed cell death and aerenchyma formation in roots. Trends Plant Sci 5(3):123–127

    Article  PubMed  CAS  Google Scholar 

  • Elias TE, Rozich WR, Newcombe L (1975) The foliar and floral nectaries of Turnera ulmifolia L. Am J Bot 62:570–576

    Article  Google Scholar 

  • Evert RF (2006) Esau's plant anatomy: meristems, cells and tissue of the plant body: their structure, function, and development. John Wiley and Sons, New York

    Book  Google Scholar 

  • Frei E (1955) Die innervierung der floralen nektarien dikotyler pflanzenfamilien. Berichte der schweizerischen botanischen Gesellschaft 65:60–114

    Google Scholar 

  • Fukuda H (2000) Programmed cell death of tracheary elements as a paradigm in plants. Plant Mol Biol 44:245–253

    Article  PubMed  CAS  Google Scholar 

  • Gaffal KP, Friedrichs GJ, El-Gammal S (2007) Ultrastructural evidence for a dual function of the phloem and programmed cell death in the floral nectary of Digitalis purpurea. Ann Bot 99:593–607

    Article  PubMed Central  PubMed  Google Scholar 

  • Galetto L, Bernadello G (2004) Floral nectaries, nectar production dynamics and chemical composition in six Ipomoea species (Convolvulaceae) in relation to pollinators. Ann Bot 94:269–280

    Article  PubMed  CAS  Google Scholar 

  • Gan S, Amasino RM (1997) Making sense of senescence: molecular genetic regulation and manipulation of leaf senescence. Plant Physiol 113:313–319

    PubMed Central  PubMed  CAS  Google Scholar 

  • Giaquinta RT (1979) Phloem loading of sucrose. Involvement of membrane ATPase and proton transport. Plant Physiol 63:744–748

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Giuliani C, Consonni G, Gavazzi G, Colombo M, Dolfini S (2002) Programmed cell death during embryogenesis in maize. Ann Bot 90:287–292

    Article  PubMed  Google Scholar 

  • Greenwood JS, Helm M, Gietl C (2005) Ricinosomes and endosperm transfer cell structure in programmed cell death of the nucellus during Ricinus seed development. Proc Natl Acad Sci U S A 102:2238–2243

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gunawardena AH, Pearce DM, Jackson MB, Hawes CR, Evans DE (2001a) Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize Zea mays L. Planta 212:205–214

    Article  PubMed  CAS  Google Scholar 

  • Gunawardena AH, Pearce DM, Jackson MB, Hawes CR, Evans DE (2001b) Rapid changes in cell wall pectic polysaccharides are closely associated with early stages of aerenchyma formation, a spatially localized form of programmed cell death in roots of maize (Zea mays L.) promoted by ethylene. Plant Cell Environment 24(12):1369–1375

    Article  CAS  Google Scholar 

  • Gunawardena AH, Greenwood JS, Dengler NG (2004) Programmed cell death remodels lace plant leaf shape during development. The Plant Cell 16:60–73

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Heath M (2000) Hypersensitive response-related cell death. Plant Mol Biol 44:321–334

    Article  PubMed  CAS  Google Scholar 

  • Horner HT, Healy RA, Cervantes MT, Palmer RG (2003) Floral nectary fine structure and development in Glycine max L. (Fabaceae). Int J Plant Sci 164:675–690

    Article  Google Scholar 

  • Jones AM (2000) Does the plant mitochondrion integrate cellular stress and regulate programmed cell death? Trends Plant Sci 5:225–230

    Article  PubMed  CAS  Google Scholar 

  • Jones AM (2001) Programmed cell death in development and defense. Plant Physiol 125:94–97

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kuriyama H (1999) Loss of tonoplast integrity programmed in tracheary element differentiation. Plant Physiol 121:763–774

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Leonard RT, Hodges TK (1980) The plasma membrane. In: Tolbert NE (ed) The biochemistry of plants. Academic Press, New York, pp 163–182

    Google Scholar 

  • Liu WZ, Zhou YF, Wang X, Jiao ZJ (2010) Programmed cell death during pigment gland formation in Gossypium hirsutum leaves. Plant Biol 12:895–902

    Article  PubMed  CAS  Google Scholar 

  • Lord CE, Gunawardena AH (2011) Environmentally induced programmed cell death in leaf protoplasts of Aponogeton madagascariensis. Planta 233(2):407–421

    Article  PubMed  CAS  Google Scholar 

  • Mastroberti AJ, de Araujo Mariath JE (2008) Development of mucilage cells of Araucaria angustifolia (Araucariaceae). Protoplasma 232(3):233–245

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Lam E (1995) In situ detection of nDNA fragmentation during the differentiation of tracheary elements in higher plants. Plant Physiol 108:489–493

    PubMed Central  PubMed  CAS  Google Scholar 

  • Moller SG, McPherson MJ (1998) Developmental expression and biochemical analysis of the Arabidopsis atao1 gene encoding an H2O2-generating diamineoxidase. Plant J 13:781–791

    Article  PubMed  CAS  Google Scholar 

  • Nepi M, Ciampolini F, Pacini E (1996) Development and ultrastructure of Cucurbita pepo nectaries of male flowers. Ann Bot 78:95–104

    Article  Google Scholar 

  • Nicolson SW, Nepi M, Pacini E (2007) Nectaries and nectar. Springer, Netherlands, pp 145–148

    Book  Google Scholar 

  • Noodén LD (2003) Plant cell death processes. Elsevier, USA

    Google Scholar 

  • Paiva EA, Machado SR (2008) The floral nectary of Hymenaea stigonocarpa (Fabaceae, Caesalpinioideae): structural aspects during floral development. Ann Bot 101:125–133

    Article  PubMed Central  PubMed  Google Scholar 

  • Reape TJ, McCabe PF (2008) Apoptotic-like programmed cell death in plants. New Phytol 180:13–26

    Article  PubMed  CAS  Google Scholar 

  • Rogers HJ (2006) Programmed cell death in floral organs: how and why do flowers die? Ann Bot 97:309–315

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rudall PJ (2002) Homologies of inferior ovaries and septal nectaries in monocotyledons. International Jurnal of Plant Sciences 163:261–276

    Article  Google Scholar 

  • Sawidis TH, Eleftheriou EP, Tsekos I (1987) The floral nectaries of Hibiscus rosa-sinensis L. development of secretory hairs. Ann Bot 59:643–652

    Google Scholar 

  • Sineonova E, Sikora A, Charzynska M, Mostowska A (2000) Aspects of programmed cell death during leaf senescence of mono- and dicotyledonous plants. Protoplasma 214:93–101

    Article  Google Scholar 

  • Stolar J, Davis AR (2010) Floral nectary structure, nectar production, and carbohydrate composition in the Lilium Asiatic hybrid 'Trésor'. Botany 88(2):185–205

    Article  CAS  Google Scholar 

  • Stpiczyńska M, Nepi M (2003) Nectar resorption in the spur of Platanthera chlorantha Custer (Rchb.) Orchidaceae—structural and microautoradiographic study. Plant Syst Evol 238:119–126

    Google Scholar 

  • Stpiczyńska M, Milanesi C, Faleri C, Cresti M (2005) Ultrastructureof the spur of Platanthera chlorantha (Custer) Rchb. (Orchidaceae) during successive stages of nectar secretion. Acta Biologia Cracoviensia Series Botanica 47:111–119

    Google Scholar 

  • Vacca RA, de Pinto MC, Valenti D, Passarella S, Marra E, Gara LD (2004) Product ion of reactive oxygen species, alteration of cytosolic ascorbate peroxidase and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco bright-yellow 2 cells. Plant Physiol 134(3):1100–1112

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • van Doorn WG, Woltering EJ (2005) Many ways to exit ? Cell death categories in plants. Trends in Plant Sciences 10(3):117–122

    Article  CAS  Google Scholar 

  • van Doorn WG, Beers EP, Dang JL, Franklin-Ton VE (2011) Morphological classification of plant cell deaths. Cell Death Differ 18:1241–1246

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Varnier AL, Mazeyrat-Gourbeyre F, Sangwan RS, Clement C (2005) Programmed cell death progressively models the development of anther sporophytic tissues from the tapetum and is triggered in pollen grains during maturation. J Struct Biol 152:118–128

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Li J, Bostock RM, Gilchrist DG (1996) Apoptosis: a functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development. The Plant Cell 8:375–391

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wertman J, Lord CEN, Dauphinee AN, Gunawardena AH (2012) The pathway of cell dismantling during programmed cell death in lace plant (Aponogeton madagascariensis) leaves. Plant Biol 12:115–131

    Google Scholar 

  • Wist TJ, Davis AR (2006) Floral nectar production and nectary anatomy and ultrastructure of Echinacea purpurea (Asteraceae). Ann Bot 97:177–193

    Article  PubMed Central  PubMed  Google Scholar 

  • Wright H, van Doorn WG, Gunawardena AH (2009) In vivo study of development programmed cell death using the lace plant (Aponogeton madagascariensis; aponogetonaceae) leaf model system. Am J Bot 96(5):865–876

    Article  PubMed  Google Scholar 

  • Zhang XG, Cote GG, Crain RC (2002) Involvement of phosphoinositide turnover in tracheary element differentiation in Zinnia elegans L. cells. Planta 215:312–318

    Article  PubMed  CAS  Google Scholar 

  • Zhou YF, Liu WZ (2011) Laticiferous canal formation in fruits of Decaisnea fargesii: a programmed cell death process. Protoplasma 248:683–694

    Article  PubMed  Google Scholar 

  • Zhu J, Hu ZH (2002) Cytological studies on the development of sieve element and floral nectary tissue in Arabidopsis thaliana. Acta Botanica Sinica 44:9–14

    Google Scholar 

Download references

Acknowledgments

We thank Margaret Joyner and Dr. Su Hui for her excellent revision of the manuscript. This work was supported by the National Science Foundation of China (30970170, 31270428).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Zhe Liu.

Additional information

Handling Editor: Friedrich W. Bentrup

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gui, MY., Liu, WZ. Programmed cell death during floral nectary senescence in Ipomoea purpurea . Protoplasma 251, 677–685 (2014). https://doi.org/10.1007/s00709-013-0570-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-013-0570-3

Keywords

Navigation