Skip to main content
Log in

Winter wheat cells subjected to freezing temperature undergo death process with features of programmed cell death

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Programmed cell death is a process defined as genetically regulated self-destruction or cell suicide. It can be activated by different internal and external factors, but few studies have investigated whether this process occurs under cold and freezing temperatures. In this study, a freezing treatment (−8 °C for 6 h) induced cell death with features of programmed cell death in suspension cultures of winter wheat (Triticum aestivum L.). This process occurred for 10 days after cold exposure. The death of cells in culture was slow and prolonged, and was accompanied by protoplast shrinkage, DNA fragmentation, and an increase in the level of reactive oxygen species. Other changes observed after the freezing treatment included an increase in the respiration rate, changes in mitochondrial transmembrane potential (∆Ψ m ), and the release of cytochrome c from mitochondria into the cytosol. These findings indicated that mitochondria are involved in the cell death process that occurs after a freezing treatment in cells of winter wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andronis EA, Roubelakis-Angelakis KA (2010) Short-term salinity stress in tobacco plants leads to the onset of animal-like PCD hallmarks in planta in contrast to long-term stress. Planta 231:437–448

    Article  PubMed  CAS  Google Scholar 

  • Asahina E (1956) The freezing process of plant cells. Contrib Inst Low Temp Sci 10:83–126

    Google Scholar 

  • Baker CJ, Mock NM (1994) An improved method for monitoring cell death in cell suspension and leaf disk assay using Evans blue. Plant Cell Tissue Organ Cult 39:7–12

    Article  Google Scholar 

  • Balk J, Chew SK, Leaver CJ, McCabe PF (2003) The intermembrane space of plant mitochondria contains a DNase activity that may be involved in programmed cell death. Plant J 34:573–583

    Article  PubMed  CAS  Google Scholar 

  • Battelli R, Lombardi L, Rogers HJ, Picciarelli P, Lorenzi R, Ceccarelli N (2011) Changes in ultrastructure, protease and caspase-like activities during flower senescence in Lilium longiflorum. Plant Sci 180:716–725

    Article  PubMed  CAS  Google Scholar 

  • Behal RH, Oliver DJ (1998) NAD+-dependent isocitrate dehydrogenase from Arabidopsis thaliana. Characterization of two closely related subunits. Plant Mol Biol 36:691–698

    Article  PubMed  CAS  Google Scholar 

  • Bi YH, Chen WL, Zhang WN, Zhou Q, Yun LJ, Xing D (2009) Production of reactive oxygen species, impairment of photosynthetic function and dynamic changes in mitochondria are early events in cadmium-induced cell death in Arabidopsis thaliana. Biol Cell 101:629–643

    Article  PubMed  CAS  Google Scholar 

  • Bras M, Queenan B, Susin SA (2005) Programmed cell death via mitochondria: different modes of dying. Biochem 70:231–239

    CAS  Google Scholar 

  • Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav 8:4. doi:10.4161/psb.23681

    Google Scholar 

  • Contran N, Cerana R, Crosti P, Malerba M (2007) Cyclosporin A inhibits programmed cell death and cytochrome c release induced by fusicoccin in sycamore cells. Protoplasma 231:193–199

    Article  PubMed  CAS  Google Scholar 

  • D'Angeli S, Altamura MM (2007) Osmotin induces cold protection in olive trees by affecting programmed cell death and cytoskeleton organization. Planta 225:1147–1163

    Article  PubMed  CAS  Google Scholar 

  • Danon A, Rotari VI, Gordon A, Mailhac N, Gallois P (2004) Ultraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase-like activities and which can be suppressed by caspase inhibitors, p53 and defender against apoptotic death. J Biol Chem 279:779–787

    Article  PubMed  CAS  Google Scholar 

  • Duval I, Brochu V, Simard M, Beaulieu C, Beaudoin N (2005) Thaxtomin A induces programmed cell death in Arabidopsis thaliana suspension-cultured cells. Planta 222:820–831

    Article  PubMed  CAS  Google Scholar 

  • Faoro F, Iriti M (2009) Plant cell death and cellular alterations induced by ozone: key studies in Mediterranean conditions. Environ Pollut 157:1470–1477

    Article  PubMed  CAS  Google Scholar 

  • Fukuda H (2000) Programmed cell death of tracheary elements as a paradigm in plants. Plant Mol Biol 44:245–253

    Article  PubMed  CAS  Google Scholar 

  • Gao C, Zhang L, Wen F, Xing D (2008) Sorting out the role of reactive oxygen species during plant programmed cell death induced by ultraviolet-C overexposure. Plant Signal Behav 3:197–198

    Article  PubMed Central  PubMed  Google Scholar 

  • Glantz SA (1998) Primer of biostatistics. McGraw-Hill, New-York

    Google Scholar 

  • Heath MC (1997) Apoptosis, programmed cell death and the hypersensitive response. Eur J Plant Pathol 104:117–124

    Article  Google Scholar 

  • Hoeberichts FA, Woltering EJ (2002) Multiple mediators of plant programmed cell death: interplay of conserved cell death mechanisms and plant-specific regulators. BioEssays 25:47–57

    Article  CAS  Google Scholar 

  • Houot V, Etienne P, Petitot A-S, Barbier S, Blein J-P, Suty L (2001) Hydrogen peroxide induces programmed cell death features in cultured tobacco BY-2 cells, in a dose-dependent manner. J Exp Bot 52:721–1730

    Article  Google Scholar 

  • Ishikawa HA (1996) Ultrastructural features of chilling injury: injured cells and early events during chilling of suspension-cultured mung bean cells. Am J Bot 83:825–835

    Article  Google Scholar 

  • Koukalová B, Kovařík A, Fajkus J, Široký J (1997) Chromatin fragmentation associated with apoptotic changes in tobacco cells exposed to cold stress. FEBS Lett 414:289–292

    Article  PubMed  Google Scholar 

  • Krishnamurthy KV, Krishnaraj R, Chozhavendan R, Christopher FS (2000) The programme of cell death in plants and animals—a comparison. Curr Sci 79:1169–1181

    CAS  Google Scholar 

  • Kuo A, Cappelluti S, Cervantes-Cervantes M, Rodriguez M, Bush DS (1996) Okadaic acid, a protein phosphatase inhibitor, blocks calcium changes, gene expression, and cell death induced by gibberellin in wheat aleurone cells. Plant Cell 8:259–269

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kwon SI, Cho HJ, Kim SR, Park OK (2013) The Rab GTPase RabG3b positively regulates autophagy and immunity-associated hypersensitive cell death in Arabidopsis. Plant Physiol 161:1722–1736

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of head bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lei X-Y, Zhu R-Y, Zhang G-Y, Dai Y-R (2004) Attenuation of cold-induced apoptosis by exogenous melatonin in carrot suspension cells: the possible involvement of polyamines. J Pineal Res 36:126–131

    Article  PubMed  CAS  Google Scholar 

  • Levitt J, Siminovitch D (1940) The relation between frost resistance and the physical state of protoplasm. I. Protoplasm as a whole. Can J Res Sect C 18:550–561

    Article  Google Scholar 

  • Li Z, Xing D (2010) Mitochondrial pathway leading to programmed cell death induced by aluminum phytotoxicity in Arabidopsis. Plant Signal Behav 5:1660–1662

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li Z, Xing D (2011) Mechanistic study of mitochondria-dependent programmed cell death induced by aluminium phytotoxicity using fluorescence techniques. J Exp Bot 62:331–343

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Wang Y, Wang G (2005) Salt stress-induced programmed cell death via Ca2+-mediated mitochondrial permeability transition in tobacco protoplasts. Plant Growth Reg 45:243–250

    Article  CAS  Google Scholar 

  • Lord CE, Gunawardena AH (2012) Programmed cell death in C. elegans, mammals and plants. Eur J Cell Biol 91:603–613

    Article  PubMed  CAS  Google Scholar 

  • Mahalingam R, Fedoroff N (2003) Stress response, cell death and signalling: the many faces of reactive oxygen species. Physiol Plant 119:56–68

    Article  CAS  Google Scholar 

  • McCabe PF, Levine A, Meijer PJ, Tapon NA, Pennell RI (1997) A programmed cell death pathway activated in carrot cells cultured at low cell density. Plant J 12:267–280

    Article  CAS  Google Scholar 

  • Mittler R, Simon L, Lam E (1997) Pathogen-induced programmed cell death in tobacco. J Cell Sci 110:1333–1344

    PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ning S-B, Song Y-C, van Damme P (2002) Characterization of the early stages of programmed cell death in maize root cells by using comet assay and the combination of cell electrophoresis with annexin binding. Electrophoresis 23:2096–2102

    Article  PubMed  CAS  Google Scholar 

  • Pennell RI, Lamb C (1997) Programmed cell death in plants. Plant Cell 9:1157–1168

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Quirino BF, Noh YS, Himelblau E, Amasino RM (2000) Molecular aspects of leaf senescence. Trends Plant Sci 5:278–282

    Article  PubMed  CAS  Google Scholar 

  • Reape TJ, McCabe PF (2008) Apoptotic-like programmed cell death in plants. New Phytol 180:13–26

    Article  PubMed  CAS  Google Scholar 

  • Reape TJ, McCabe PF (2010) Apoptotic-like regulation of programmed cell death in plants. Apoptosis 15:249–256

    Article  PubMed  CAS  Google Scholar 

  • Reape TJ, Molony EM, McCabe PF (2008) Programmed cell death in plants: distinguishing between different modes. J Exp Bot 59:435–444

    Article  PubMed  CAS  Google Scholar 

  • Reinbothe C, Springer A, Samol I, Reinbothe S (2009) Plant oxylipins: role of jasmonic acid during programmed cell death, defence and leaf senescence. FEBS J 276:4666–4681

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Serrano M, Bárány I, Prem D, Coronado M-J, Risueño MC, Testillano PS (2012) NO, ROS, and cell death associated with caspase-like activity increase in stress-induced microspore embryogenesis of barley. J Exp Bot 63:2007–2024

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rogers HJ (2005) Cell death and organ development in plants. Curr Top Dev Biol 71:225–261

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein B (2000) Regulation of cell death in flower petals. Plant Mol Biol 44:303–318

    Article  PubMed  CAS  Google Scholar 

  • Scott I, Logan DC (2008) Mitochondria and cell death pathways in plants: actions speak louder than words. Plant Signal Behav 3:475–477

    Article  PubMed Central  PubMed  Google Scholar 

  • Simeonova E, Garstka M, Kozioł-Lipińska J, Mostowska A (2004) Monitoring the mitochondrial transmembrane potential with the JC-1 fluorochrome in programmed cell death during mesophyll leaf senescence. Protoplasma 223:143–153

    Article  PubMed  CAS  Google Scholar 

  • Vacca RA, de Pinto MC, Valenti D, Passarella S, Marra E, de Gara L (2004) Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco Bright-Yellow 2 cells. Plant Physiol 134:1100–1112

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vacca RA, Valenti D, Bobba A, Merafina RS, Passarella S, Marra E (2006) Cytochrome c is released in a reactive oxygen species-dependent manner and is degraded via caspase-like proteases in tobacco Bright-Yellow 2 cells en route to heat shock-induced cell death. Plant Physiol 141:208–219

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • van Doorn WG (2011) Classes of programmed cell death in plants, compared to those in animals. J Exp Bot 62:4749–4761

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Oppedijk BJ, Lu X, Duijn BV, Schilperoort RA (1996) Apoptosis in barley aleurone during germination and its inhibition by abscisic acid. Plant Mol Biol 32:1125–1134

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Du Y, Li Y, Ren D, Songa C-P (2010) Hydrogen peroxide-mediated activation of MAP kinase 6 modulates nitric oxide biosynthesis and signal transduction in Arabidopsis. Plant Cell 22:2981–2998

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wu J, Lightner J, Warwick N, Browse J (1997) Low-temperature damage and subsequent recovery of fab1 mutant Arabidopsis exposed to 2 °C. Plant Physiol 113:347–356

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wu M, Huang J, Xu S, Ling T, Xie Y, Shen W (2011) Haem oxygenase delays programmed cell death in wheat aleurone layers by modulation of hydrogen peroxide metabolism. J Exp Bot 62:235–248

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yao N, Eisfelder BJ, Marvin J, Greenberg JT (2004) The mitochondrion—an organelle commonly involved in programmed cell death in Arabidopsis thaliana. Plant J 40:596–610

    Article  PubMed  CAS  Google Scholar 

  • Yun JG, Hayashi T, Yazawa S, Katoh T, Yasuda Y (1996) Acute morphological changes of palisade cells of Saintpaulia leaves induced by a rapid temperature drop. J Plant Res 109:339–342

    Article  Google Scholar 

  • Zhou Z, Wang L, Li J, Song X, Yang C (2009) Study on programmed cell death and dynamic changes of starch accumulation in pericarp cells of Triticum aestivum L. Protoplasma 236:49–58

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Ministry of Education and Science of the Russian Federation under the 8266 agreement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga I. Grabelnych.

Additional information

Handling Editor: Heiti Paves

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyubushkina, I.V., Grabelnych, O.I., Pobezhimova, T.P. et al. Winter wheat cells subjected to freezing temperature undergo death process with features of programmed cell death. Protoplasma 251, 615–623 (2014). https://doi.org/10.1007/s00709-013-0562-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-013-0562-3

Keywords

Navigation