Skip to main content
Log in

Computation-led design of pollutant gas sensors with bare and carbon nanotube supported rhodium alloys

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Quantum chemical study has been performed on finite-sized bi-metallic Rh3M alloys, M = Ag, Ir, Pd, Pt, Au, derived from magic cluster, Rh4. Bond length of C–O and N–O are noticed to be elongated in the presence of rhodium alloy clusters. CO2 and NO2 gases are found to be highly adsorbed on Rh3M clusters, which is confirmed by stretching frequency of C–O and N–O. DFT evaluated dipole moment and electronic charge redistribution suggests the sensing capability of CO2 and NO2 gases by Rh3M clusters which is further confirmed by the calculated HOMO–LUMO gap. Mixed rhodium alloy clusters supported on single-wall carbon nanotube (SWCNT) exhibits much higher ability to sense CO2 and NO2. On the other hand, SWCNT@Rh3M shows higher catalytic activity for the activation of CO2 and NO2 in comparison to bare Rh3M because of the higher electronic charge redistribution in the case of SWCNT@Rh3M. In case of SWCNT-supported gas adsorbed clusters, p electrons play a major role in bonding.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Elkind JL, Weiss FD, Alford JM, Laaksonen RT, Smalley RE (1998) J Chem Phys 88:5215

    Google Scholar 

  2. Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Science 287:1989

    CAS  PubMed  Google Scholar 

  3. Chung SH, Hoffmann A, Guslienko K, Bader SD, Liu C, Kay B, Makowski L, Chen L (2005) J Appl Phys 97:10R101

    Google Scholar 

  4. Nam JM, Thaxton CS, Mirkin CA (2003) Science 301:1884

    CAS  PubMed  Google Scholar 

  5. Tsang SC, Yu CH, Gao X, Tam K (2006) J Phys Chem B 110:16914

    CAS  PubMed  Google Scholar 

  6. Freyschlag CG, Madix RJ (2011) Mater Today 14:134

    CAS  Google Scholar 

  7. Cooper J, Beecham J (2013) Platin Met Rev 57:281

    Google Scholar 

  8. Rainer DR, Koranne M, Vesecky SM, Goodman DW (1997) J Phys Chem B 101:10769

    CAS  Google Scholar 

  9. Piccolo L, Henry CR (2001) J Mol Catal A Chem 167:181

    CAS  Google Scholar 

  10. Yin Z, Li C, Su Y, Liu Y, Wang Y, Chen G (2012) Chem Phys 395:108

    CAS  Google Scholar 

  11. Dutta A, Mondal P (2016) RSC Adv 6:6946

    CAS  Google Scholar 

  12. Dutta A, Mondal P (2017) J Clust Sci 28:2601

    CAS  Google Scholar 

  13. Dutta A, Mondal P (2018) New J Chem 42:1121

    CAS  Google Scholar 

  14. Jimenez-Cadena G, Riu J, Rius FX (2007) Analyst 132:1083

    CAS  PubMed  Google Scholar 

  15. Fine GF, Cavanagh LM, Afonja A, Binions R (2010) Sensors 10:5469

    CAS  PubMed  Google Scholar 

  16. Liu X, Cheng S, Liu H, Hu S, Zhang D, Ning H (2012) Sensors 12:9635

    PubMed  Google Scholar 

  17. Chiu SW, Tang KT (2013) Sensors 13:14214

    CAS  PubMed  Google Scholar 

  18. Castleman AW, Jena P (2006) Proc Natl Acad Sci 103:1055

    Google Scholar 

  19. Suematsu K, Shin Y, Hua Z, Yoshida K, Yuasa M, Kida T, Shimanoe K (2014) ACS Appl Mater Interfaces 6:5319

    CAS  PubMed  Google Scholar 

  20. Mathew A, Pradeep T (2014) Part Part Syst Charact 31:1017

    CAS  Google Scholar 

  21. Soltani A, Raz SG, Taghartapeh MR, Moradi AV, Mehrabian RZ (2013) Comput Mater Sci 79:795

    CAS  Google Scholar 

  22. Beheshtian J, Peyghan AA, Bagheri Z (2012) Comput Mater Sci 62:71

    CAS  Google Scholar 

  23. Olah GA, Goeppert A, Prakash GKS (2009) Beyond oil and gas: the methanol economy. Wiley, Weinheim

    Google Scholar 

  24. Nielsen M, Alberico E, Baumann W, Drexler HJ, Junge H, Gladiali S, Beller M (2013) Nature 495:85

    CAS  PubMed  Google Scholar 

  25. Yu KMK, Tong W, West A, Cheung K, Li T, Smith G, Tsang SCE (2012) Nat Commun 3:1230

    PubMed  Google Scholar 

  26. Zhang Q, Qiu Z, Chung KF, Huang SK (2015) J Thorac Dis 7:14

    Google Scholar 

  27. Sadaoka Y, Jones TA, Revell GS, Göpel W (1990) J Mater Sci 25:5257

    CAS  Google Scholar 

  28. Korolkoff NO (1989) Solid State Technol 32:49

    CAS  Google Scholar 

  29. Sberveglieri G, Groppelli S, Nelli P (1991) Sens Actuators B Chem 4:457

    CAS  Google Scholar 

  30. Grilli ML, Di Bartolomeo E, Traversa E (2001) J Electrochem Soc 148:H98

    CAS  Google Scholar 

  31. Baei MT, Soltani AR, Moradi AV, Lemeski ET (2011) Comp Theoret Chem 970:30

    CAS  Google Scholar 

  32. Beheshtian J, Peyghan AA, Bagheri Z (2012) Appl Surf Sci 259:631

    CAS  Google Scholar 

  33. Beheshtian J, Peyghan AA, Bagheri Z, Kamfiroozi M (2012) S Struct Chem 23:1567

    CAS  Google Scholar 

  34. Beheshtian J, Baei MT, Peyghan AA, Bagheri Z (2012) J Mol Model 18:4745

    CAS  PubMed  Google Scholar 

  35. Beheshtian J, Peyghan AA, Bagheri Z (2012) Sens Actuators B Chem 171:846

    Google Scholar 

  36. Breza M (2006) J Mol Struct (Theochem) 767:159

    CAS  Google Scholar 

  37. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Science 287:622

    CAS  PubMed  Google Scholar 

  38. Collins PG, Bradley K, Ishigami M, Zettl DA (2000) Science 287:1801

    CAS  PubMed  Google Scholar 

  39. Jhi SH, Louie SG, Cohen ML (2000) Phys Rev Lett 85:1710

    CAS  PubMed  Google Scholar 

  40. Peng S, Cho K (2000) Nanotechnology 11:57

    CAS  Google Scholar 

  41. Valentini L, Armentano I, Kenny JM, Cantalini C, Lozzi L, Santucci S (2003) Appl Phys Lett 82:961

    CAS  Google Scholar 

  42. Zurek E, Autschbach J (2004) J Am Chem Soc 126:13079

    CAS  PubMed  Google Scholar 

  43. Cinke M, Li J, Bauschlicher CW Jr, Ricca A, Meyyappan M (2003) Chem Phys Lett 376:761

    CAS  Google Scholar 

  44. Yu CH, Huang CH, Tan CS (2012) Aerosol Air Qual Res 12:745

    CAS  Google Scholar 

  45. Khalili S, Ghoreyshi AA, Jahanshahi M (2013) Chem Ind Chem Eng Q 19:153

    CAS  Google Scholar 

  46. Larijani MM, Safa S (2014) Acta Phys Pol A 126:732

    CAS  Google Scholar 

  47. Rossetti I, Ramis G, Gallo A, Di Michele A (2015) Int J Hydrogen Energy 40:7609

    CAS  Google Scholar 

  48. Ha NN, Ha NTT (2015) J Mol Model 21:322

    PubMed  Google Scholar 

  49. Sakata Y, Uddin MA, Muto A, Imaoka M (1997) Micropor Mat 9:183

    CAS  Google Scholar 

  50. Liang XL, Xie JR, Liu ZM (2015) Catal Lett 145:1138

    CAS  Google Scholar 

  51. Kong H, Li HY, Lin GD, Zhang HB (2011) Catal Lett 141:886

    CAS  Google Scholar 

  52. Sharafeldin IM, Allam NK (2017) New J Chem 41:14936

    CAS  Google Scholar 

  53. Espinosa EH, Ionescu R, Chambon B, Bedis G, Sotte E, Bittencourt C, Llobet E (2007) Sens Actuators B Chem 127:137

    CAS  Google Scholar 

  54. Ionescu R, Espinosa EH, Leghrib R, Felten A, Pireaux JJ, Erni R, Llobet E (2008) Sens Actuators B Chem 13:174

    Google Scholar 

  55. Herzberg G (1966) Molecular spectra and molecular structure III: electronic spectra and electronic structure of polyatomic molecules, vol 26. Van Nostrand, New York, p 1

    Google Scholar 

  56. Huo PY, Zhang XR, Yu ZC, Gao K, Zhu J (2018) Surf Rev Lett 25:1950008

    CAS  Google Scholar 

  57. Saputro AG, Agusta MK, Wungu TDK, Rusydi F, Dipojono HK (2016) J Phys Conf Ser 739:012083

    Google Scholar 

  58. Sverdlov LM, Kraĭnov EP (1974) Vibrational spectra of polyatomic molecules. Wiley, New York

    Google Scholar 

  59. Shimanouchi T (1972) Tables of molecular vibrational frequencies consolidated. NSRDS-NBS 39: US Government Printing Office, Washington

    Google Scholar 

  60. Tkatchenko A, Scheffler M (2009) Phys Rev Lett 102:073005

    PubMed  Google Scholar 

  61. Chang CC, Ho JJ (2015) Phys Chem Chem Phys 17:11028

    CAS  PubMed  Google Scholar 

  62. Nguyen TTH, Le Minh C, Nguyen NH (2017) Comput Theor Chem 1100:46

    CAS  Google Scholar 

  63. Delley B (2000) J Chem Phys 113:7756

    CAS  Google Scholar 

  64. Delley B (1990) J Chem Phys 92:508

    CAS  Google Scholar 

  65. Becke AD (1988) Phys Rev A 38:3098

    CAS  Google Scholar 

  66. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    CAS  Google Scholar 

  67. Delley B, Ellis DE (1982) J Chem Phys 76:1949

    CAS  Google Scholar 

  68. Delley B (1998) Int J Quantum Chem 69:423

    CAS  Google Scholar 

  69. Pulay P (1980) Chem Phys Lett 73:393

    CAS  Google Scholar 

  70. Pulay P (1982) J Comput Chem 3:556

    CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Department of Science and Technology (DST), New Delhi, India for financial support (SB/EMEQ-214 /2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paritosh Mondal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, A., Pradhan, A.K., Qi, F. et al. Computation-led design of pollutant gas sensors with bare and carbon nanotube supported rhodium alloys. Monatsh Chem 151, 159–171 (2020). https://doi.org/10.1007/s00706-019-02539-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-019-02539-8

Keywords

Navigation