Skip to main content

Advertisement

Log in

Evaluating the performance of regional climate models to simulate the US drought and its connection with El Nino Southern Oscillation

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The aim of this study is to evaluate the ability of regional climate models (RCMs) to simulate drought pattern, persistence, and the role of El Nino Southern Oscillation (ENSO) on the Continental United States (CONUS) drought. The Standardized Precipitation Evapotranspiration Index (SPEI) at 3-month timescale is used to quantify the drought. We use the Taylor diagram, Hurst exponent, and logistic regression technique to measure regional drought pattern, persistence, and the link between drought occurrences and ENSO respectively. The observational data are from the Climate Research Units (CRU), the University of East Anglia while the RCM-simulated data are from the six RCMs participating in the Coordinated Regional Climate Downscaling Experiment (CORDEX) for 1979–2015. The results show that RCMs with spectral nudging consistently show large correlations of simulated SPEI with observations over all regions. Observed spatial pattern of the persistence, average severity, and trend in the SPEI time series are very similar to the simulations. RCM simulations generally overestimate the persistence and trends in the SPEI time series while the average severity is underestimated over most regions. The observed link between ENSO and US drought is more prominent during the winter. Unlike for correlations, the RCMs with spectral nudging (CanRCM4, CRCM5 (OURANOS), and WRF) do not show better performance in simulating the link between the ENSO and drought occurrence compared to the RCMs without spectral nudging (CRCM5 (UQAM), RCA4, and RegCM4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data used in this study are freely available as mentioned in the acknowledgments.

Code availability

We used R that is available freely from https://www.r-project.org/.

References

  • Allen R, Pereira L, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements FAO irrigation and drainage paper 56. FAO, Rome 300(9):D05109

    Google Scholar 

  • Arritt, R. (2008). Regional drought in the North American Regional Climate Change Assessment Program (NARCCAP). NOAA. Retrieved from https://www.cpc.ncep.noaa.gov/products/outreach/workshops/CDPW33/abstracts/rarritt.shtml

  • Aryal Y, Zhu J (2017) On bias correction in drought frequency analysis based on climate models. Clim Change 140(3–4):361–374

    Article  Google Scholar 

  • Aryal Y, Zhu J (2020) Multimodel ensemble projection of meteorological drought scenarios and connection with climate based on spectral analysis. Int J Climatol 40(7):3360–3379

    Article  Google Scholar 

  • Ashfaq M, Rastogi D, Mei R, Kao S-C, Gangrade S, Naz B, Touma D (2016) High-resolution ensemble projections of near-term regional climate over the continental United States. Journal of Geophysical Research: Atmospheres 121(17):9943–9963

    Google Scholar 

  • Basso B, Ritchie J (2014) Temperature and drought effects on maize yield. Nat Clim Chang 4(4):233

    Article  Google Scholar 

  • Bêche LA, Connors PG, Resh VH, Merenlende AM (2009) Resilience of fishes and invertebrates to prolonged drought in two California streams. Ecography 32(5):778–788

    Article  Google Scholar 

  • Bond NR, Lake P, Arthington AH (2008a) The impacts of drought on freshwater ecosystems: an Australian perspective. Hydrobiologia 600(1):3–16

    Article  Google Scholar 

  • Bukovsky M, Gochis D, Mearns L (2013) Towards assessing NARCCAP regional climate model credibility for the North American Monsoon: current climate simulations. J Clim 26(22):8802–8826

    Article  Google Scholar 

  • Camargo S, Emanuel K, Sobel A (2007) Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J Clim 20(19):4819–4834

    Article  Google Scholar 

  • Chylek P, Dubey M, Hengartner N, Klett J (2017) Observed and projected precipitation changes over the nine US climate regions. Atmosphere 8(11):207

    Article  Google Scholar 

  • Dai A (2011) Drought under global warming: a review. Wiley Interdisciplinary Reviews: Climate Change 2(1):45–65

    Google Scholar 

  • Daryanto S, Wang L, Jacinthe PA (2016) Global synthesis of drought effects on maize and wheat production. PloS one 11(5):e0156362

    Article  Google Scholar 

  • Dee, D., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., . . . Vitart, F. (2011). The ERA-Interim reanalysis: configuration and performance of. Quarterly Journal of the royal meteorological society, 137(656), 553-597

  • Diaconescu E, Gachon P, Laprise R, Scinocca J (2016) Valuation of precipitation indices over North America from various configurations of regional climate model. Atmos Ocean 54(4):418–439

    Article  Google Scholar 

  • Ding Y, Hayes M, Widhalm M (2011) Measuring economic impacts of drought: a review and discussion. Disaster Prevention and Management: an International Journal 20(4):434–446

    Article  Google Scholar 

  • Feldl, N., & Roe, G. (2010). Synoptic weather patterns associated with intense ENSO rainfall in the southwest United States. Geophysical Research Letters, 37(23).

  • Ford T, Labosier C (2014) Spatial patterns of drought persistence in the Southeastern United States. Int J Climatol 34(7):2229–2240

    Article  Google Scholar 

  • Ganguli P, Ganguly A (2016) Robustness of meteorological droughts in dynamically downscaled climate simulations. JAWRA Journal of the American Water Resources Association 52(1):138–167

    Article  Google Scholar 

  • Giorgi, F., & Anyah , R. (2012). The Regional Climate Model RegCM4. Climate Research. Retrieved from https://www.int-res.com/abstracts/cr/v52/

  • Giorgi, F., & Gutowski Jr, W. J. (2015). Regional dynamical downscaling and the CORDEX initiative. Annual review of environment and resources, 40.

  • Girardin M-P, Tardif J, Flannigan M, Bergeron Y (2006) Synoptic-scale atmospheric circulation and Boreal Canada summer drought variability of the past three centuries. J Clim 19(10):1922–1947

    Article  Google Scholar 

  • Gleckler, P., Taylor, K., & Doutriaux, C. (2008). Performance metrics for climate models. sournal of Geophysical Research: Atmospheres, 113(D6).

  • Hamed K, Rao A (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204(1–4):182–196

    Article  Google Scholar 

  • Hao Z, Singh V, Xia Y (2018) Seasonal drought prediction: advances, challenges, and future prospects. Review of Geophysics S6:108–141

    Article  Google Scholar 

  • Harou, J. J., Medellín‐Azuara, J., Zhu, T., Tanaka, S. K., Lund, J. R., Stine, S., . . . Jenkins, M. W. (2010). Economic consequences of optimized water management for a prolonged, severe drought in California. Water Resources Research, 46(5).

  • Harris I, Jones P, Osborn T, Lister D (2014) Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int J Climatol 34(3):623–642

    Article  Google Scholar 

  • Heim R Jr (2002) A review of twentieth-century drought Indices used in the United States. Bull Am Meteor Soc 83(8):1149–1165

    Article  Google Scholar 

  • Helsel, D., & Hirsch, R. (1992). Statistical methods in water resources (Vol. 92). Elsevier.

  • Hightower M, Pierce S (2008) The Energy Challenge Nature 452:285–286

    Google Scholar 

  • Jeong D, Sushama L, Khaliq M (2014) The role of temperature in drought projections over North America. Clim Change 127(2):289–303

    Article  Google Scholar 

  • Jones C, Giorgi F, Asrar G (2011) The Coordinated Regional Downscaling Experiment: CORDEX, an International Downscaling Link to CMIP5. Clivar Exchanges 16:34–39

    Google Scholar 

  • Kam J, Sheffield J, Wood E (2014) Changes in drought risk over the contiguous United States (1901–2012): the Influence of the Pacific and Atlantic Oceans. Geophys Res Lett 41(16):5897–5903

    Article  Google Scholar 

  • Karl, T., & Koss, W. (1984). Regional and national monthly, seasonal, and annual temperature weighted by area, 1895–1983. doi:chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https://repository.library.noaa.gov/view/noaa/10238/noaa_10238_DS1.pdf?download-document-submit=Download

  • Karl, T., Gleason, B., Menne, M., & ... and co-authers. (2012). US temperature and drought: recent anomalies and trends. Eos, Transactions American Geophysical Union, 93(47), 473-474

  • Kelley CP, Mohtadi S, Cane MA, Seager R, Kushnir Y (2015) Climate change in the fertile crescent and implications of the recent Syrian drought. Proc Natl Acad Sci 112(11):3241–3246

    Article  Google Scholar 

  • Kiem, A., Johnson, F., Westra, S., Dijk, A., & ... and co authors. (2016). Natural hazards in Australia: droughts. Climatic Change, 139(1), 37–54.

  • Kingston D, Stagge J, Tallaksen L, Hannah D (2015) European-scale drought: understanding connections between atmospheric circulation and meteorological drought indices. J Clim 28(2):505–516

    Article  Google Scholar 

  • Kumar S, Merwade V, Kinter JL, Niyogi D (2013) Evaluation of temperature and precipitation trends and long-term persistence in CMIP5 twentieth-century climate simulations. J Clim 26(12):4168–4185

    Article  Google Scholar 

  • Larkin, N., & Harrison, D. (2005). Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophysical Research Letters, 32(16).

  • Lobell D, Roberts M, Schlenker W, Braun N, Little B, Rejesus R, Hammer G (2014) Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Science 6183(344):516–519

    Article  Google Scholar 

  • Mandelbrot B, Wallis J (1969) Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence. Water Resour Res 5(5):967–988

    Article  Google Scholar 

  • Maxwell J, Soulé P, Ortegre J, Knapp P (2012) Drought-busting tropical cyclones in the southeastern Atlantic United States: 1950–2008. Ann Assoc Am Geogr 102(2):259–275

    Article  Google Scholar 

  • McCabe G, Betancourt J, Gray S, Palecki M, Hidalgo H (2008) Associations of multi-decadal sea-surface temperature variability with US drought. Quatern Int 188(1):31–40

    Article  Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. Eighth conference on applied climatology, Anaheim, California

    Google Scholar 

  • Mearns, L. (2017). The NA-CORDEX dataset, version 1.0. NCAR Climate Data Gateway, Boulder CO, accessed [08/01/2019]. doi:https://doi.org/10.5065/D6SJ1JCH

  • Mearns LO et al (2012) The North American regional climate change assessment program: overview of phase I results. Bull Am Meteor Soc 93(9):1337–1362

    Article  Google Scholar 

  • Meng L, Ford T, Guo Y (2017) Logistic regression analysis of drought persistence in East China. Int J Climatol 37:1444–1455

    Article  Google Scholar 

  • Mishra AK, Singh VP (2010) A review of drought concepts. Hournal of Hydrology 391(1):202–216

    Article  Google Scholar 

  • Mo K (2010) Interdecadal modulation of the impact of ENSO on precipitation and temperature over the United States. J Clim 23(13):3639–3656

    Article  Google Scholar 

  • Nielsen-Gammon J (2012) The 2011 Texas drought. Texas Water Journal 3(1):59–95

    Google Scholar 

  • Oglesby RJ, Erickson DJ III (1989) Soil moisture and the persistence of North American Drought. J Clim 2(11):1362–1380

    Article  Google Scholar 

  • Orth R, Seneviratne S (2013) Predictability of soil moisture and streamflow on subseasonal timescales: a case study. Journal of Geophysical Research: Atmospheres 118(19):10–963

    Google Scholar 

  • Özger M, Mishra A, Singh V (2009) Low frequency drought variability associated with climate indices. J Hydrol 364(1–2):152–162

    Article  Google Scholar 

  • Palmer, W. (1965). Meteorological Drought. Washington DC

  • Peng C-Y, Lee K, Ingersoll G (2002) An introduction to logistic regression analysis and reporting. J Educ Res 96(1):3–14

    Article  Google Scholar 

  • Peterson T, Hoerling M, Stott P, Herring S (2013) Explaining extreme events of 2012 from a climate perspective. Bull Am Meteor Soc 94(9):S1–S74

    Article  Google Scholar 

  • Rangarajan G, Sant DA (2004) Fractal dimensional analysis of Indian climatic dynamics. Chaos, Solitons Fractals 19(2):285–291

    Article  Google Scholar 

  • Rayner, N., Parker, D., Horton, E., Folland, C., Alexander, L., Rowell, D., . . . Kaplan, A. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres, 108(D14).

  • Rippey B (2015) The U.S. drought of 2012. Weather and climate extremes 10(A):57–64

    Article  Google Scholar 

  • Ropelewski C, Halpert M (1986) North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon Weather Rev 114(12):2352–2362

    Article  Google Scholar 

  • Saini R, Wang G, Pal J (2016) Role of soil moisture feedback in the development of extreme summer drought and flood in the United States. J Hydrometeorol 17(8):2191–2207

    Article  Google Scholar 

  • Samuelsson, P., Gollvik, S., Kupiainen, M., Kourzeneva, E., Berg, W., & Jansson, C. (2015). the surface processes of the Rossby Centre Regional Atmospheric Climate Model (RCA4). SMHI (http://www.diva-portal.org/smash/get/diva2:948138/FULLTEXT01.pdf).

  • Scinocca, J., Kharin, V., Jiao, Y., Qian, M., Lazare, M., Solheim, L., . . . Dugas, B. (2016). Coordinated global and regional climate modeling. Journal of Climate, 29(1), 17-35.

  • Seager, R., Hoerling, M., Schubert, S., Wang, H., Lyon, B., Kumar, A., . . . Henderson, N. (2015). Causes of the 2011–14 California drought. Journal of Climate, 28(18), 6997-7024

  • Šeparović, L., Alexandru, A., Laprise, R., Martynov, A., Sushama, L., Winger, K., . . . Valin, M. (2013). Present climate and climate change over North America as simulated by the fifth-generation Canadian regional climate model. Climate Dynamics, 41(11-12), 3167–3201

  • Sheffield J, Wood E (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31(1):79–105

    Article  Google Scholar 

  • Shukla S, Safeeq M, AghaKouchak A, Guan K, Funk C (2015) Temperature impacts on the water year 2014 drought in California. Geophys Res Lett 42(11):4384–4393

    Article  Google Scholar 

  • Smith A, Katz R (2013) U.S. Billion-dollar weather and climate disasters: data sources, trends, accuracy and biases. Natural hazards 67(2):387–410

    Article  Google Scholar 

  • Stahl K, Demuth S (1999) Linking streamflow drought to the occurrence of atmospheric circulation patterns. Hydrol Sci J 44(3):467–482

    Article  Google Scholar 

  • Tatli H (2015) Detecting persistence of meteorological drought via the Hurst exponent. Meteorol Appl 22(4):763–769

    Article  Google Scholar 

  • Taylor K (2001) Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres 106(D7):7183–7192

    Article  Google Scholar 

  • Vicente-Serrano S, Begueria S, Lopez-Moreno J (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23(7):1696–1718

    Article  Google Scholar 

  • Vicent-Serrano, S. M., Lopez-Moreno, J., Gimeno, L., Nieto, R., Moran-Tejeda, E., Lorenzo-Lacruz, J., . . . Azorin-Molina, C. (2011). A multiscalar global evaluation of the impact of ENSO on droughts. Journal of Geophysical Research: Atmospheres, 116(D20), 1-23

  • Vliet M, Sheffield J, Wiberg D, Wood E (2016) Impacts of recent drought and warm years on water resources and electricity supply worldwide. Environ Res Letters 11(12):124021

    Article  Google Scholar 

  • Walter, I., Allen, R., Elliott, R., & ..., and co-authors. (2000). ASCE’s standardized reference evapotranspiration equation. In Watershed Management and Operations Management 2000, 1-11.

  • Wang, Q., Wu, J., Lei, T., He, B., Wu, Z., Liu, M., . . . Liu, D. (2014). Temporal-spatial characteristics of severe drought events and their impact on agriculture on a global scale. Quaternary International, 349, 10-21

  • Whan K, Zwiers F (2016) valuation of extreme rainfall and temperature over North America in CanRCM4 and CRCM5. Clim Dyn 46(11–12):3821–3843

    Article  Google Scholar 

  • Wilhite DA, Glantz MH (1985) Understanding: the drought phenomenon: the role of definitions. Water International 10(3):111–120

    Article  Google Scholar 

  • Zhu X, Fraedrich K, Liu Z, Blender R (2010) A demonstration of long-term memory and climate predictability. J Clim 23(18):5021–5029

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Climate Research Unit (CRU) of the University of the East Anglia (https://data.ceda.ac.uk/badc/cru/data/), the European Centre for Medium-Range Weather Forecasts (ECMWF: https://www.ecmwf.int/), Climate Data Gateway at NCAR (https://www.earthsystemgrid.org/), NOAA Earth System Research Laboratory (https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino34.long.anom.data) that produced and made available their output.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Yog Aryal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2813 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aryal, Y., Zhu, J. Evaluating the performance of regional climate models to simulate the US drought and its connection with El Nino Southern Oscillation. Theor Appl Climatol 145, 1259–1273 (2021). https://doi.org/10.1007/s00704-021-03704-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-021-03704-y

Navigation