Skip to main content
Log in

Rasagiline and selegiline suppress calcium efflux from mitochondria by PK11195-induced opening of mitochondrial permeability transition pore: a novel anti-apoptotic function for neuroprotection

  • Translational Neurosciences - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Rasagiline and selegiline, inhibitors of type B monoamine oxidase (MAO-B), protect neurons from cell death in cellular and animal models. Suppression of mitochondrial membrane permeabilization and subsequent activation of apoptosis cascade, and induction of anti-apoptotic, pro-survival genes are proposed to contribute the anti-apoptotic function. Rasagiline suppresses neurotoxin- and oxidative stress-induced membrane permeabilization in isolated mitochondria, but the mechanism has been not fully clarified. In this paper, regulation of the mitochondrial permeability transition pore by rasagiline and selegiline was examined in apoptosis induced by PK11195, a ligand of the outer membrane translocator protein 18 kDa (TSPO) in SH-SY5Y cells. The pore opening was quantitatively measured using a simultaneous monitoring system for calcium (Ca2+) and superoxide (O2 ) (Ishibashi et al. in Biochem Biophys Res Commun 344:571–580, 2006). The association of the pore opening with Ca2+ efflux and ROS increase was proved by the inhibition of Bcl-2 overexpression and cyclosporine A treatment. Potency to release Ca2+ was correlated with the cytotoxicity of TSPO antagonists, PK11195, FGIN-1-27 and protoporphyrin IX, whereas a TSPO agonist, 4-chloro-diazepamine, did not significantly increase Ca2+ or cause cell death. Rasagiline and selegiline inhibited mitochondrial Ca2+ efflux through the mitochondrial permeability transition pore dose dependently. Ca2+ efflux was confirmed as the initial signal in mitochondrial apoptotic cascade, and the suppression of Ca2+ efflux may account for the neuroprotective function of rasagiline and selegiline. The quantitative measurement of Ca2+ efflux can be applied to determine anti-apoptotic activity of neuroprotective compounds. The role of mitochondrial Ca2+ release in neuronal death and also in neuroprotection by MAO-B inhibitors is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANT:

Adenine nucleotide translocator

Cyp-D:

Cyclophilin D

CysA:

Cyclosporin-A

Cyt c:

Cytochrome c

ΔΨm:

Mitochondrial membrane potential

ER:

Endoplasmic reticulum

ETC:

Electron transport chain

EthD-1:

Ethidium homodimer-1

MMP:

Mitochondrial membrane permeabilization

Mptp:

Mitochondrial permeability transition pore

TSPO:

Outer membrane transporter protein (18 kDa)

VDAC:

Voltage-dependent anion channel

References

  • Akao Y, Maruyama W, Shimizu S, Yi H, Shamoto-Nagai M et al (2002) Mitochondrial permeability transition mediates apoptosis induced by N-methyl(R)salsolinol, an endogenous neurotoxin, and its inhibited by Bcl-2 and rasagiline, N-propargyl-1(R)-aminoindan. J Neurochem 82:913–923

    Article  CAS  PubMed  Google Scholar 

  • Azarashvili T, Grachev G, Krestinina O, Evtodienko Y, Yurkov I et al (2007) The peripheral-type benzodiazepine receptor is involved in control of Ca2+-induced permeability transition pore opening in rat brain mitochondria. Cell Calcium 42:27–39

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner HK, Gerasimenko JV, Thorne C, Ferdek P, Pozzan T et al (2009) Calcium elevation in mitochondria is requirement for mitochondrial permeability transition pore (mPTP) opening. J Biol Chem 284:20796–20803

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bernardi P (1996) The permeability transition pore. Control of a cyclosporine A-sensitive mitochondrial channel involved in cell death. Biochim Biophys Acta 1275:5–9

    Article  PubMed  Google Scholar 

  • Bernardi P, von Stockum S (2012) The permeability transition pore as a Ca2+ channel: new answers to an old question. Cell Calcium 52:22–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bezprozvanny I, Mattson MP (2008) Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci 31:454–463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bonora M, Bononi A, De Marchi E, Giorgi C, Lebiedzinski M et al (2013) Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle 12:674–683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brenner C, Moulin M (2012) Physiological roles of the permeability transition pore. Circ Res 111:1222–1236

    Article  Google Scholar 

  • Burke RT (2007) Programmed cell death in Parkinson’s disease. In: Koller WC, Melamed E (eds) Handbook of clinical neurology, Parkinson’s disease and related disorders, Part I, vol 83. Elsevier, Amsterdam, pp 591–605

  • Cassarino DS, Parks JK, Parker WD Jr, Bennett JP Jr (1999) The parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism. Biochim Biophys Acta 1453:49–62

    Article  CAS  PubMed  Google Scholar 

  • Chan CS, Guzman JN, Illijic E, Mercer JN, Rick C et al (2007) ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 447:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Chan CS, Gertler TS, Surmeier DJ (2009) Calcium homeostasis, selective vulnerability and Parkinson’s disease. Trends Neurosci 32:249–256

    Article  CAS  PubMed  Google Scholar 

  • Costantini P, Chernyak BV, Petronilli V, Berneardi P (1995) Selective inhibition of the mitochondrial permeability transition pore at the oxidation–reduction sensitive dithiol by monobromobimane. FEBS Lett 362:239–242

    Article  CAS  PubMed  Google Scholar 

  • Costantini P, Colonna R, Bernardi P (1998) Induction of the mitochondrial permeability transition by N-ethylmaleimide depends on secondary oxidation of critical thiol groups. Potentiation by copper-ortho-phenanthroline without dimerization of the adenine nucleotide translocator. Biochim Biophys Acta 1365:385–392

    Article  CAS  PubMed  Google Scholar 

  • Czerniczyniec A, Bustamante J, Lores-Arnaiz S (2006) Modulation of brain mitochondrial function by deprenyl. Neurochem Int 48:235–241

    Article  CAS  PubMed  Google Scholar 

  • Czerniczyniec A, Bustamante J, Lores-Arnaiz S (2007) Improvement of mouse brain mitochondrial function after deprenyl treatment. Neuroscience 144:685–693

    Article  CAS  PubMed  Google Scholar 

  • De Marchi U, Piertrangeli P, Marcocci L, Mondovi B, Toninello A (2003) l-Deprenyl as an inhibitor of menadione-induced permeability transition in liver mitochondria. Biochem Pharmacol 66:1749–1754

    Article  PubMed  Google Scholar 

  • Duchen MR (2012) Mitochondria, calcium-dependent neuronal death and neurodegenerative disease. Pfugers Arch Eur J Physiol 464:111–121

    Article  CAS  Google Scholar 

  • Ebadi M, Brown-Borg H, Ren J, Sharma S, Shavali S, ReFacy HE, Carlson EC (2006) Therapeutic efficacy of selegiline in neurodegenerative disorders and neurological diseases. Curr Drug Targets 7:1513–1529

    Article  CAS  PubMed  Google Scholar 

  • Eriksson O, Fontaine E, Petronilli V, Bernardi P (1997) Inhibition of the mitochondrial cyclosporine A-sensitive permeability transition pore by the arginine reagent phenylglyoxal. FEBS Lett 409:361–364

    Article  CAS  PubMed  Google Scholar 

  • Fedrizzi L, Carafoli E (2011) Ca2+ dysfunction in neurodegenerative disorders: Alzheimer’s disease. BioFactors 37:189–196

    Article  CAS  PubMed  Google Scholar 

  • Friberg H, Wieloch T (2002) Mitochondrial permeability transition in acute neurodegeneration. Biochimie 84:241–250

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Zamzami N, Rouge T, Lemaire C, Brenner C, Kroemer G (2007) Methods for the assessment of mitochondrial permeabilization in apoptosis. Apoptosis 12:803–813

    Article  CAS  PubMed  Google Scholar 

  • Giacomello M, Oliveros JC, Naranjo JR, Carafoli E (2013) Neuronal Ca2+ dyshomeostasis in Huntington disease. Prion 7:76–84

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giorgi C, Baldassari F, Bononi A, Bononi M, Marchi ED et al (2012) Mitochondrial Ca2+ and apoptosis. Cell Calcium 52:36–43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Halestrap AP, Brenner C (2003) The adenine nucleotide transporter: a central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem 10:1507–1525

    Article  CAS  PubMed  Google Scholar 

  • Inaba-Hasegawa K, Akao Y, Maruyama W, Naoi M (2012) Type A monoamine oxidase is associated with induction of neuroprotective Bcl-2 by rasagiline, an inhibitor of type B monoamine oxidase. J Neural Transm 119:405–414

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi K, Okazaki S, Hiramatsu M (2006) Simultaneous measurement of superoxide generation and intracellular Ca2+ concentration reveals the effect of extracellular Ca2+ on rapid and transient contents of superoxide generation in differentiated THP-1 cells. Biochem Biophys Res Commun 344:571–580

    Article  CAS  PubMed  Google Scholar 

  • Kaludercic N, Carpi A, Manabo R, Lisa FD, Paolocci N (2011) Monoamine oxidase (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta 1813:1323–1332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kazumura K, Sato Y, Satozono H, Koike T, Tsuchiya H et al (2013) Simultaneous monitoring of superoxides and intracellular calcium ions in neutrophils by chemiluminescence: evaluation of action mechanisms of bioactive compounds in foods. J Pharm Biomed Anal 84:90–96

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  CAS  PubMed  Google Scholar 

  • Kwong JQ, Davis J, Baines CP, Sargent MA, Karch J et al (2014) Genetic deletion of the mitochondrial phosphate carrier desensitizes the mitochondrial permeability transition pore and causes cardiomyopathy. Cell Death Differ 21:1209–1217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leung AWC, Varanyuwatan P, Halestrap AP (2008) The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition. J Biol Chem 283:26312–26323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Magyar K (2011) Pharmacology of selegiline. Int Rev Neurobiol 100:65–84

    Article  CAS  PubMed  Google Scholar 

  • Martin LJ, Adams NA, Pan Y, Price A, Wong M (2011) The mitochondrial permeability transition pore regulates nitric oxide-mediated apoptosis of neurons induced by target deprivation. J Neurosci 31:359–370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maruyama W, Naoi M (2013) “70th Birthday Professor Riederer”. Induction of glial cell-line-derived and brain-derived neurotrophic factors by rasagiline and (−)deprenyl: a way to a disease-modifying therapy? J Neural Transm 120:83–89

    Article  CAS  PubMed  Google Scholar 

  • Maruyama W, Akao Y, Youdim MBH, Davis BA, Naoi M (2001) Transfection-enforced Bcl-2 overexpression and an anti-Parkinson drug, rasagiline, prevent nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase induced by an endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol. J Neurochem 78:727–735

    Article  CAS  PubMed  Google Scholar 

  • Naoi M, Maruyama W (2009) Functional mechanism of neuroprotection by inhibitors of type B monoamine oxidase in Parkinson’s disease. Expert Rev Neurother 9:1233–1250

    Article  CAS  PubMed  Google Scholar 

  • Naoi M, Maruyama W (2010) Monoamine oxidase inhibitors as neuroprotective agents in age-dependent neurodegenerative disorders. Curr Pharm Design 16:2799–2817

    Article  CAS  Google Scholar 

  • Naoi M, Maruyama W, Akao Y, Yamaoka Y (2006) Involvement of type A monoamine oxidase in neurodegeneration: regulation of mitochondrial signaling leading to cell death or neuroprotection. J Neural Transm Suppl 71:67–77

    Article  CAS  PubMed  Google Scholar 

  • Naoi M, Maruyama W, Inaba-Hasegawa K (2013a) Revelation in neuroprotective functions of rasagiline and selegiline: the induction of distinct genes by different mechanisms. Expert Rev Neurother 13:671–684

    Article  CAS  PubMed  Google Scholar 

  • Naoi M, Maruyama W, Yi H (2013b) Rasagiline prevents apoptosis induced by PK11195, a ligand of the outer membrane translocator protein (18 kDa), in SH-SY5Y cells through suppression of cytochrome c release from mitochondria. J Neural Transm 120:1539–1551

    Article  CAS  PubMed  Google Scholar 

  • Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    Article  CAS  PubMed  Google Scholar 

  • Park D, Chiu J, Perrone GG, Dilda PJ, Hogg PJ (2012) The tumor metabolism inhibitors GSAO and PENAO react with cysteines 57 and 257 of mitochondrial adenine nucleotide translocator. Cancer Cell Int 12:11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Riederer P, Lachensmayer L, Laux G (2004) Clinical applications of MAO-inhibitors. Curr Med Chem 11:2033–2043

    Article  CAS  PubMed  Google Scholar 

  • Sorato E, Menazza S, Zulian A, Sabatelli P, Gualandi F et al (2014) Monoamine oxidase inhibition prevents mitochondrial dysfunction and apoptosis in myoblasts from patients with collagen VI myopathy. Free Rad Biol Med 75:40–47

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Striessnig J, Koschak A, Sinnegger-Brauns MJ, Hetezenauer A, Nguyen NK et al (2006) Role of voltage-gated L-type Ca2+ channel isoforms for brain function. Biochem Soc Trans 34:903–909

    Article  CAS  PubMed  Google Scholar 

  • Tatton WG, Chalmers-Redman RM, Ju WJ, Mammen M, Carlile GW et al (2002) Propargylamines induce antiapoptotic new protein synthesis in serum- and nerve growth factor (NGF)-withdrawn, NGF-differentiated PC-12 cells. J Pharmacol Exp Ther 301:753–764

    Article  CAS  PubMed  Google Scholar 

  • Vaarmann A, Gandhi S, Abramov AY (2010) Dopamine induces Ca2+ signaling in astrocytes through reactive oxygen species generated by monoamine oxidase. J Biol Chem 285:25018–25023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vay L, Hernandez-SanMiguel E, Lobaton CD, Moreno A, Montero M, Alzarez J (2009) Mitochondrial free [Ca2+] levels and the permeability transition. Cell Calcium 45:243–250

    Article  CAS  PubMed  Google Scholar 

  • Vila M, Przedborski S (2003) Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 4:1–11

    Article  Google Scholar 

  • Wadia JS, Chalmers-Redman RME, Ju WJH, Carilile GW, Phillips JL et al (1998) Mitochondrial membrane potential and nuclear changes in apoptosis caused by serum and nerve growth factor withdrawal: time course and modification by (−)-deprenyl. J Neurosci 8:932–957

    Google Scholar 

  • Wang W, Fang H, Groom L, Cheng A, Zhang W et al (2008) Superoxide flashes in single mitochondria. Cell 134:279–290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weinreb O, Amit T, Bar-Am O, Sagi Y, Mandel S, Youdim MB (2009) Involvement of multiple survival signal transduction pathways in the neuroprotective, neurorescue and APP processing activity of rasagiline and its propargyl moiety. J Neural Transm Suppl 70:457–465

    Article  Google Scholar 

  • Wu Y, Osawa T, Kazumura K, Maruyama W, Naoi M (2015) Anti-apoptotic function of astaxanthin: prevention of mitochondrial permeability transition pore opening (in preparation)

  • Youdim MBH, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7:295–309

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Grant for Longevity Science (21A-13) from the Ministry of Health, Labour and Welfare, Japan (W. M., M. N., Y. W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Naoi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Kazumura, K., Maruyama, W. et al. Rasagiline and selegiline suppress calcium efflux from mitochondria by PK11195-induced opening of mitochondrial permeability transition pore: a novel anti-apoptotic function for neuroprotection. J Neural Transm 122, 1399–1407 (2015). https://doi.org/10.1007/s00702-015-1398-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-015-1398-0

Keywords

Navigation