Skip to main content

Advertisement

Log in

Brain hypometabolism triggers PHF-like phosphorylation of tau, a major hallmark of Alzheimer’s disease pathology

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Sporadic Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disorder of unknown cause characterized by fibrillar accumulation of the Aß-peptide and aggregates of the microtubule-associated protein tau in a hyperphosphorylated form. Already at preclinical stages, AD is characterized by hypometabolic states which are a good predictor of cognitive decline. Here, we summarize recent evidence derived from the study of hibernating animals that brain hypometabolism can trigger PHF-like hyperphosphorylation of tau. We put forward the concept that particular types of neurons respond to a hypometabolic state with an elevated phosphorylation of tau protein which represents a physiological mechanism involved in regulating synaptic gain. If, in contrast to hibernation, the hypometabolic state is not terminated after a definite time but rather persists and progresses, the elevated phosphorylation of tau protein endures and the protective reaction associated with it might turn into a pathological cascade leading to neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arendt T, Brückner MK (2007) Linking cell-cycle dysfunction in Alzheimer’s disease to a failure of synaptic plasticity. Biochim Biophys Acta 1772:413–421

    CAS  PubMed  Google Scholar 

  • Arendt T, Brückner MK, Bigl V, Marcova L (1995) Dendritic reorganisation in the basal forebrain under degenerative conditions and its defects in Alzheimer’s disease. II. Ageing, Korsakoff’s disease, Parkinson’s disease, and Alzheimer’s disease. J Comp Neurol 351(2):189–222

    CAS  PubMed  Google Scholar 

  • Arendt T, Stieler J, Strijkstra AM, Hut RA, Rüdiger J, Van der Zee EA, Harkany T, Holzer M, Härtig W (2003) Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals. J Neurosci 23:6972–6981

    CAS  PubMed  Google Scholar 

  • Bhaskar K, Yen SH, Lee G (2005) Disease-related modifications in tau affect the interaction between Fyn and Tau. J Biol Chem 280:35119–35125

    CAS  PubMed  Google Scholar 

  • Bindman LJ, Lippold OC, Redfearn JW (1963) Comparison of the effects on electrocortical activity of general body cooling of the surface of the brain. Electroencephalogr Clin Neurophysiol 15:238–245

    CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    CAS  PubMed  Google Scholar 

  • Braak H, Del Tredici K (2011) The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol 121(2):171–181

    PubMed  Google Scholar 

  • Braak H, Thal DR, Ghebremedhin E, Del Tredici K (2011) Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70:960–969

    CAS  PubMed  Google Scholar 

  • Brooks VB (1983) Study of brain function by local, reversible cooling. Rev Physiol Biochem Pharmac 95:1–109

    Google Scholar 

  • Brooks CM, Koizumi K, Malcolm JL (1955) Effects of changes in temperature on reactions of spinal cord. J Neurophysiol 18:205–216

    CAS  PubMed  Google Scholar 

  • Caroni P, Donato F, Muller D (2012) Structural plasticity upon learning: regulation and functions. Nat Rev Neurosci 13:478–490

    CAS  PubMed  Google Scholar 

  • Chatfield PO, Lyman CP (1954) Subcortical electrical activity in the golden hamster during arousal from hibernation. Electroencephalogr Clin Neurophysiol 6:403–408

    CAS  PubMed  Google Scholar 

  • Chen Y, Matsushita M, Nairn AC, Damuni Z, Cai D, Frerichs KU, Hallenbeck JM (2001) Mechanisms for increased levels of phosphorylation of elongation factor-2 during hibernation in ground squirrels. Biochemistry 40:11565–11570

    CAS  PubMed  Google Scholar 

  • Cleveland DW, Hwo SY, Kirschner MW (1977) Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol 116:227–247

    CAS  PubMed  Google Scholar 

  • Cremer H, Chazal G, Goridis C, Represa A (1997) NCAM is essential for axonal growth and fasciculation in the hippocampus. Mol Cell Neurosci 8:323–335

    CAS  PubMed  Google Scholar 

  • Daan S, Barnes BM, Strijkstra AM (1991) Warming up for sleep? Ground squirrels sleep during arousals from hibernation. Neurosci Lett 128:265–268

    CAS  PubMed  Google Scholar 

  • de Leon MJ, Convit A, Wolf OT, Tarshish CY, DeSanti S, Rusinek H, Tsui W, Kandil E, Scherer AJ, Roche A, Imossi A, Thorn E, Bobinski M, Caraos C, Lesbre P, Schlyer D, Poirier J, Reisberg B, Fowler J (2001) Prediction of cognitive decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-Dglucose/poitron-emission tomography (FDG/PET). Proc Natl Acad Sci USA 98:10966–10971

    PubMed Central  PubMed  Google Scholar 

  • Devous MDS (2002) Functional brain imaging in the dementias: role in early detection, differential diagnosis, and longitudinal studies. Eur J Nucl Med Mol Imaging 29:1685–1696

    PubMed  Google Scholar 

  • Drechsel DN, Hyman AA, Cobb MH, Kirschner MW (1992) Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol Biol Cell 3:1141–1154

    PubMed Central  CAS  PubMed  Google Scholar 

  • Durbec P, Cremer H (2001) Revisiting the function of PSA-NCAM in the nervous system. Mol Neurobiol 24:53–64

    CAS  PubMed  Google Scholar 

  • Elobeid A, Soininen H, Alafuzoff I (2012) Hyperphosphorylated tau in young and middle-aged subjects. Acta Neuropathol 123:97–104

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fox GB, O’Connell AW, Murphy KJ, Regan CM (1995) Memory consolidation induces a transient and time-dependent increase in the frequency of neural cell adhesion molecule polysialylated cells in the adult rat hippocampus. J Neurochem 65:2796–2799

    CAS  PubMed  Google Scholar 

  • Frerichs KU, Hallenbeck JM (1998) Hibernation in ground squirrels induces state and species-specific tolerance to hypoxia and aglycemia: an in vitro study in hippocampal slices. J Cereb Blood Flow Metab 18:168–175

    CAS  PubMed  Google Scholar 

  • Gasparini L, Xu H (2003) Potential roles of insulin and IGF-1 in Alzheimer’s disease. Trends Neurosci 26:404–406

    CAS  PubMed  Google Scholar 

  • Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 66:239–274

    CAS  PubMed  Google Scholar 

  • Geiser F, Kenagy GJ (1988) Torpor duration in relation to temperature and metabolisms in hibernating ground squirrels. Physiol Zool 61:442–449

    Google Scholar 

  • Gertz HJ, Xuereb J, Huppert F, Brayne C, McGee MA, Paykel E, Harrington C, Mukaetova-Ladinska E, Arendt T, Wischik CM (1998) Examination of the validity of the hierarchical model of neuropathological staging in normal aging and Alzheimer’s disease. Acta Neuropathol 95:154–158

    CAS  PubMed  Google Scholar 

  • Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3:519–526

    CAS  PubMed  Google Scholar 

  • Haley AP, Knight-Scott J, Simnad VI, Manning CA (2006) Increased glucose concentration in the hippocampus in early Alzheimer’s disease following oral glucose ingestion. Magn Reson Imaging 24:715–720

    CAS  PubMed  Google Scholar 

  • Hamill NJ, McGinn MD, Horowitz JM (1989) Auditory brainstem responses in ground squirrels arousing from hibernation. J Comp Physiol B 159:167–172

    CAS  PubMed  Google Scholar 

  • Härtig W, Klein C, Brauer K, Schüppel KF, Arendt T, Brückner G, Bigl V (2000) Abnormally phosphorylated protein tau in the cortex of aged individuals of various mammalian orders. Acta Neuropathol 100(3):305–312

    PubMed  Google Scholar 

  • Härtig W, Stieler J, Boerema AS, Wolf J, Schmidt U, Weisfus J, Bullmann T, Strijkstra AM, Arendt T (2007) Hibernation model of tau phosphorylation in hamsters: selective vulnerability of cholinergic basal forebrain neurons—implications for Alzheimers’s disease. Eur J Neurosci 25:69–80

    PubMed  Google Scholar 

  • Heldmaier G (2011) Physiology. Life on low flame in hibernation. Science 331:866–867

    CAS  PubMed  Google Scholar 

  • Heldmaier G, Ruf T (1992) Body temperature and metabolic rate during natural hypothermia in endotherms. J Comp Physiol B 162:696–706

    CAS  PubMed  Google Scholar 

  • Heller HC (1979) Hibernation: neural aspects. Annu Rev Physiol 41:305–321

    CAS  PubMed  Google Scholar 

  • Holzer M, Holzapfel HP, Zedlick D, Brückner MK, Arendt T (1994) Abnormally phosphorylated tau protein in Alzheimer’s disease: heterogeneity of individual regional distribution and relationship to clinical severity. Neuroscience 63:499–516

    CAS  PubMed  Google Scholar 

  • Holzer M, Gärtner U, Stöbe A, Härtig W, Gruschka H, Brückner MK, Arendt T (2002) Inverse association of Pin1 and tau accumulation in Alzheimer’s disease hippocampus. Acta Neuropathol 104:471–481

    CAS  PubMed  Google Scholar 

  • Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK, Pitstick R, Carlson GA, Lanier LM, Yuan LL, Ashe KH, Liao D (2010) Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68:1067–1081

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hoyer S (1992) Oxidative energy metabolism in Alzheimer brain. Studies in early-onset and late-onset cases. Mol Chem Neuropathol 16:207–224

    CAS  PubMed  Google Scholar 

  • Hoyer S (1998) Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus? A challenging hypothesis. J Neural Transm 105:415–422

    CAS  PubMed  Google Scholar 

  • Hoyer S, Nitsch R (1989) Cerebral excess release of neurotransmitter amino acids subsequent to reduced cerebral glucose metabolism in early-onset dementia of Alzheimer type. J Neural Transm 75:227–232

    CAS  PubMed  Google Scholar 

  • Hoyer S, Nitsch R, Oesterreich K (1991) Predominant abnormality in cerebral glucose utilization in late-onset dementia of the Alzheimer type: a cross-sectional comparison against advanced late-onset and incipient earl-onset cases. J Neural Transm [P-DSect] 3:1–14

    CAS  Google Scholar 

  • Hut RA, Van der Zee EA, Jansen K, Gerkema MP, Daan S (2002) Gradual reappearance of post-hibernation circadian rhythmicity correlates with numbers of vasopressin-containing neurons in the suprachiasmatic nuclei of European ground squirrels. J Comp Physiol [B] 172:59–70

    CAS  Google Scholar 

  • Igelmund P, Heinemann U, Klussmann FW (1993) Hibernation-related modification of activity-dependent properties of synaptic transmission in hamster hippocampus. Neurosci Res Commun 13:167–173

    Google Scholar 

  • Iqbal K, Grundke-Iqbal I (2005) Metabolic/signal transduction hypothesis of Alzheimer’s disease and other tauopathies. Acta Neuropathol 109:25–31

    CAS  PubMed  Google Scholar 

  • Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, Wölfing H, Chieng BC, Christie MJ, Napier IA, Eckert A, Staufenbiel M, Hardeman E, Götz J (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142:387–397

    CAS  PubMed  Google Scholar 

  • Jacobs LF (1996) The economy of winter: phenotypic plasticity in behavior and brain structure. Biol Bull 191:92–100

    CAS  PubMed  Google Scholar 

  • Kalmijn S, Mehta KM, Pols HA, Hofman A, Drexhage HA et al (2000) Subclinical hyperthyroidism and the risk of dementia. The Rotterdam study. Clin Endocrinol (Oxf) 53:733–737

    CAS  Google Scholar 

  • Kavanau JL (1997) Memory, sleep and the evolution of mechanisms of synaptic efficacy maintenance. Neuroscience 79:7–44

    CAS  PubMed  Google Scholar 

  • Kenagy GJ, Sharbaugh SM, Nagy KA (1989) Annual cycle of energy and time expenditure in a Golden mantled ground squirrel population. Oecologia 78:269–282

    Google Scholar 

  • Kilduff TS, Krilowicz B, Milsom WK, Trachsel L, Wang LC (1993) Sleep and mammalian hibernation: homologous adaptations and homologous processes? Sleep 16:372–386

    CAS  PubMed  Google Scholar 

  • Kim YK, Lee DS, Lee SK, Kim SK, Chung CK, Chang KH, Choi KY, Chung JK, Lee MC (2003) Differential features of metabolic abnormalities between medial and lateral temporal lobe epilepsy: quantitative analysis of (18)F-FDG PET using SPM. J Nucl Med 44:1006–1012

    PubMed  Google Scholar 

  • Klein C, Kramer EM, Cardine AM, Schraven B, Brandt R, Trotter J (2002) Process outgrowth of oligodendrocytes is promoted by interaction of fyn kinase with the cytoskeletal protein tau. J Neurosci 22:698–707

    CAS  PubMed  Google Scholar 

  • Krilowicz BL, Glotzbach SF, Heller HC (1988) Neuronal activity during sleep and complete bouts of hibernation. Am J Physiol 255:R1008–R1019

    CAS  PubMed  Google Scholar 

  • Lee G (2005) Tau and src family tyrosine kinases. Biochim Biophys Acta 1739:323–330

    CAS  PubMed  Google Scholar 

  • Lee G, Newman ST, Gard DL, Band H, Panchamoorthy G (1998) Tau interacts with src-family non-receptor tyrosine kinases. J Cell Sci 111:3167–3177

    CAS  PubMed  Google Scholar 

  • Lüth HJ, Ogunlade V, Kuhla B, Kientsch-Engel R, Stahl P, Webster J, Arendt T, Münch G (2005) Age- and stage-dependent accumulation of advanced glycation end products in intracellular deposits in normal and Alzheimer’s disease brains. Cereb Cortex 15:211–220

    PubMed  Google Scholar 

  • Lyman CP, Chatfield PO (1953) Hibernation and cortical electrical activity in the woodchuck (Marmota monax). Science 117:533–534

    CAS  PubMed  Google Scholar 

  • Lyness SA, Zarow C, Chui HC (2003) Neuron loss in key cholinergic and aminergic nuclei in Alzheimer disease: a meta-analysis. Neurobiol Aging 24(1):1–23

    CAS  PubMed  Google Scholar 

  • MacDonald JA, Storey B (1999) (1999) Regulation of ground squirrel Na+ K+ -ATPase activity by reversible phosphorylation during hibernation. Biochem Biophys Res Commun 254:424–429

    CAS  PubMed  Google Scholar 

  • Magariños AM, McEwen BS, Saboureau M, Pevet P (2006) Rapid and reversible changes in intrahippocampal connectivity during the course of hibernation in European hamsters. Proc Natl Acad Sci USA 103:18775–18780

    PubMed Central  PubMed  Google Scholar 

  • Malinsky J (1983) Quantitative analysis of morphological changes in the spinal cord of the hibernating bat. Folia Morphologica 31:40–45

    CAS  PubMed  Google Scholar 

  • Malinsky J, Malinska J (1975) Changes of the motoneurons and synapses of the spinal cord of the hedgehog during hibernation. In: Proceedings of the Xth International Congress of Anatomists, Tokyo, Japan

  • Malinsky J, Malinska J (1988) Ultrastructural changes of synapses in supraoptic nucleus of Hedgehog during Hibernation. Acta Universitatis Palackianae Olomucensis 12:117–125

    Google Scholar 

  • Malinsky J, Polach A (1985) Changes of synaptic apparatus in the brain cortex of the hedgehog during hibernation (a quantitative Golgi and electron microscopic study). Acta Universitatis Palackianae Olomucensis 108:109–115

    CAS  Google Scholar 

  • Massopust LC Jr, Wolin LR, Meder J (1965) Spontaneous electrical activity of the brain in hibernators and nonhibernators during hypothermia. Exp Neurol 12:25–32

    PubMed  Google Scholar 

  • McNaughton BL, Shen J, Rao G, Foster TC, Barnes CA (1994) Persistent increase of hippocampal presynaptic axon excitability after repetitive electrical stimulation: dependence on N-methyl-D-aspartate receptor activity, nitric-oxide synthase, and temperature. Proc Natl Acad Sci USA 91:4830–4834

    PubMed Central  CAS  PubMed  Google Scholar 

  • Michalski A, Wimborne BM, Henry GH (1993) The effect of reversible cooling of cat’s primary visual cortex on the responses of area 21a neurons. J Physiol 466:133–156

    PubMed Central  CAS  PubMed  Google Scholar 

  • Millesi E, Prossinger H, Dittami JP, Fieder M (2001) Hibernation effects on memory in European ground squirrels (Spermophilus citellus). J Biol Rhythms 16:254–271

    Google Scholar 

  • Mink JW, Blumenschine RJ, Adams DB (1981) Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. Am J Physiol 241:R203–R212

    CAS  PubMed  Google Scholar 

  • Mondragón-Rodríguez S, Trillaud-Doppia E, Dudilot A, Bourgeois C, Lauzon M, Leclerc N, Boehm J (2012) Interaction of endogenous tau protein with synaptic proteins is regulated by N-methyl-D-aspartate receptor-dependent tau phosphorylation. J Biol Chem 287:32040–32053

    PubMed Central  PubMed  Google Scholar 

  • Morris M, Maeda S, Vossel K, Mucke L (2011) The many faces of tau. Neuron 70:410–426

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moser E, Mathiesen I, Andersen P (1993) Association between brain temperature and dentate field potentials in exploring and swimming rats. Science 259:1324–1326

    CAS  PubMed  Google Scholar 

  • Muller D, Wang C, Skibo G, Toni N, Cremer H, Calaora V, Rougon G, Kiss JZ (1996) PSA-NCAM is required for activity-induced synaptic plasticity. Neuron 17:413–422

    CAS  PubMed  Google Scholar 

  • Murphy JK, O’Connell W, Regan CM (1996) Repetitive and transient increases in hippocampal neural cell adhesion molecule polysialylation state following multitrial spatial training. J Neurochem 67:1268–1274

    CAS  PubMed  Google Scholar 

  • Ozorio de Almeida M (1943) Investigation of epileptiform attacks produced by sudden cooling of frog spinal cord. J Neurophysiol 6:73–80

    Google Scholar 

  • Palop JJ, Mucke L (2009) Epilepsy and cognitive impairments in Alzheimer disease. Arch Neurol 66:435–440

    PubMed Central  PubMed  Google Scholar 

  • Palop JJ, Mucke L (2010) Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13:812–818

    PubMed Central  CAS  PubMed  Google Scholar 

  • Piña-Crespo JC, Daló NL (2006) Activity of common anticonvulsant drugs on spinal seizure-induced by sudden cooling. Prog Neuropsychopharmacol Biol Psychiatry 30:1202–1208

    PubMed  Google Scholar 

  • Popov VI, Bocharova LS (1992) Hibernation-induced structural changes in synaptic contacts between mossy fibres and hippocampal pyramidal neurons. Neuroscience 48:53–62

    CAS  PubMed  Google Scholar 

  • Popov VI, Bocharova LS, Bragin AG (1992) Repeated changes of dendritic morphology in the hippocampus of ground squirrels in the course of hibernation. Neuroscience 48:45–51

    CAS  PubMed  Google Scholar 

  • Reiman EM, Caselli RJ, Yun LS, Chen K, Bandy D, Minoshima S, Thibodeau SN, Osborne D (1996) Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med 334:752–758

    CAS  PubMed  Google Scholar 

  • Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D, Saunders AM, Hardy J (2004) Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc Natl Acad Sci USA 101:284–289

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316:750–754

    CAS  PubMed  Google Scholar 

  • Roberson ED, Halabisky B, Yoo JW, Yao J, Chin J, Yan F, Wu T, Hamto P, Devidze N, Yu GQ, Palop JJ, Noebels JL, Mucke L (2011) Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer’s disease. J Neurosci 31:700–711

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ruediger J, Van der Zee EA, Strijkstra AM, Aschoff A, Daan S, Hut RA (2007) Dynamics in the ultrastructure of asymmetric axospinous synapses in the frontal cortex of hibernating European ground squirrels (Spermophilus citellus). Synapse 61:343–352

    CAS  PubMed  Google Scholar 

  • Sadik G, Tanaka T, Kato K, Yamamori H, Nessa BN, Morihara T, Takeda M (2009) Phosphorylation of tau at Ser214 mediates its interaction with 14-3-3 protein: implications for the mechanism of tau aggregation. J Neurochem 108:33–43

    CAS  PubMed  Google Scholar 

  • Samsonov A, Yu JZ, Rasenick M, Popov SV (2004) Tau interaction with microtubules in vivo. J Cell Sci 117:6129–6141

    CAS  PubMed  Google Scholar 

  • Schubert M, Brazil DP, Burks DJ, Kushner JA, Ye J, Flint CL, Farhang-Fallah J, Dikkes P, Warot XM, Rio C, Corfas G, White MF (2003) Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci 23:7084–7092

    CAS  PubMed  Google Scholar 

  • Schubert M, Gautam D, Surjo D, Ueki K, Baudler S, Schubert D, Kondo T, Alber J, Galldiks N, Küstermann E, Arndt S, Jacobs AH, Krone W, Kahn CR, Brüning JC (2004) Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci USA 101:3100–3105

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seki T, Arai Y (1999a) Different polysialic acid-neural cell adhesion molecule expression patterns in distinct types of mossy fiber boutons in the adult hippocampus. J Comp Neurol 410:115–125

    CAS  PubMed  Google Scholar 

  • Seki T, Arai Y (1999b) Distribution and possible roles of the highly polysialylated neural cell adhesion molecule (NCAM-H) in the developing and adult central nervous system. Neurosci Res 17:265–290

    Google Scholar 

  • Shchipakina TG, Zharikova AD, Arkhipov VI (1995) Protein phosphorylation of synaptic membranes isolated from the brain of ground squirrels during hibernation. Neuro Report 7:278–280

    CAS  Google Scholar 

  • Shipton OA, Leitz JR, Dworzak J, Acton CE, Tunbridge EM, Denk F, Dawson HN, Vitek MP, Wade-Martins R, Paulsen O, Vargas-Caballero M (2011) Tau protein is required for amyloid beta-induced impairment of hippocampal long-term potentiation. J Neurosci 31:1688–1692

    CAS  PubMed  Google Scholar 

  • Small GW, Ercoli LM, Silverman DH, Huang SC, Komo S, Bookheimer SY, Lavretsky H, Miller K, Siddarth P, Rasgon NL, Mazziotta JC, Saxena S, Wu HM, Mega MS, Cummings JL, Saunders AM, Pericak-Vance MA, Roses AD, Barrio JR, Phelps ME (2000) Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci USA 97:6037–6042

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR Jr, Kaye J, Montine TJ, Park DC, Reiman EM, Rowe CC, Siemers E, Stern Y, Yaffe K, Carrillo MC, Thies B, Morrison-Bogorad M, Wagster MV, Phelps CH (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:280–292

    PubMed Central  PubMed  Google Scholar 

  • Stieler JT, Boerema AS, Bullmann T, Kohl F, Strijkstra AM, Barnes BM, Arendt T (2008) Activity state profile of tau kinases in hibernating animals. In: Lovegrove BG, McKechnie AE (eds) Hypometabolism in animals: hibernation, torpor and cryobiology. University of KwaZulu-Natal, Pietermaritzburg, pp 133–142

    Google Scholar 

  • Stieler JT, Bullmann T, Kohl F, Barnes BM, Arendt T (2009) PHF-like tau phosphorylation in mammalian hibernation is not associated with p25-formation. J Neural Transm 116:345–350

    CAS  PubMed  Google Scholar 

  • Stieler JT, Bullmann T, Kohl F, Tøien Ø, Bruckner MK, Bruckner MK, Hartig W, Barnes BM, Arendt T (2011) The Physiological link between metabolic rate depression and tau phosphorylation in mammalian hibernation. PLoS One 6(1):e14530. doi:10.1371/journal.pone.0014530

    PubMed Central  CAS  PubMed  Google Scholar 

  • Storey KB (1987) Regulation of liver metabolism by enzyme phosphorylation during mammalian hibernation. J Biol Chem 262:1670–1673

    CAS  PubMed  Google Scholar 

  • Strijkstra AM, Daan S (1998) Dissimilarity of slow-wave activity enhancement by torpor and sleep deprivation in a hibernator. Am J Physiol 275:R1110–R1117

    CAS  PubMed  Google Scholar 

  • Strijkstra AM, Hut RA, de Wilde MC, Stieler J, Van der Zee EA (2003) Hippocampal synaptophysin immunoreactivity is reduced during natural hypothermia in ground squirrels. Neurosci Lett 344:29–32

    CAS  PubMed  Google Scholar 

  • Swaab DF, Dubelaar EJ, Scherder EJ, van Someren EJ, Verwer RW (2003) Therapeutic strategies for Alzheimer disease: focus on neuronal reactivation of metabolically impaired neurons. Alzheimer Dis Assoc Disord 17(Suppl 4):S114–S122

    PubMed  Google Scholar 

  • Tackenberg C, Brandt R (2009) Divergent pathways mediate spine alterations and cell death induced by amyloid-beta, wild-type tau, and R406 W tau. J Neurosci 29:14439–14450

    CAS  PubMed  Google Scholar 

  • Takei Y, Teng J, Harada A, Hirokawa N (2000) Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes. J Cell Biol 150:989–1000

    PubMed Central  CAS  PubMed  Google Scholar 

  • Volgushev M, Vidyasagar TR, Chistiakova M, Eysel UT (2000) Synaptic transmission in the neocortex during reversible cooling. Neuroscience 98:9–22

    CAS  PubMed  Google Scholar 

  • von der Ohe CG, Darian-Smith C, Garner CC, Heller HC (2006) Ubiquitous and temperature-dependent neural plasticity in hibernators. J Neurosci 26:10590–10598

    PubMed  Google Scholar 

  • von der Ohe CG, Garner CC, Darian-Smith C, Heller HC (2007) Synaptic protein dynamics in hibernation. J Neurosci 27(8):4–92

    Google Scholar 

  • Walaas SI, Greengard P (1991) Protein phosphorylation and neuronal function. Pharmacol Rev 43:299–349

    CAS  PubMed  Google Scholar 

  • Walker JM, Glotzbach SF, Berger RJ, Heller HC (1977) Sleep and hibernation in ground squirrels: electrophysiological observations. Am J Physiol 233:213–221

    Google Scholar 

  • Wang LCH (1978) Energetic and field aspects of mammalian torpor: the Richardson’s ground squirrel. Strategies in cold: natural torpidity and thermogenesis. Academic, New York, pp 109–145

  • Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA 72:1858–1862

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weissmann C, Reyher HJ, Gauthier A, Steinhoff HJ, Junge W, Brandt R (2009) Microtubule binding and trapping at the tip of neurites regulate tau motion in living neurons. Traffic 10:1655–1668

    CAS  PubMed  Google Scholar 

  • Zhou F, Zhu X, Castellani RJ, Stimmelmayr R, Perry G, Smith MA, Drew KL (2001) Hibernation, a model of neuroprotection. Am J Pathol 158:2145–2151

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Arendt.

Additional information

This paper is dedicated to the memory of Siegfried Hoyer who pioneered the pathogenetic concept of energy hypometabolism in Alzheimer’s disease.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arendt, T., Stieler, J. & Holzer, M. Brain hypometabolism triggers PHF-like phosphorylation of tau, a major hallmark of Alzheimer’s disease pathology. J Neural Transm 122, 531–539 (2015). https://doi.org/10.1007/s00702-014-1342-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-014-1342-8

Keywords

Navigation