Skip to main content

Advertisement

Log in

Comparative evaluation of the potency and antigenicity of two distinct BoNT/A-derived formulations

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

IncobotulinumtoxinA (Xeomin®) and onabotulinumtoxinA (BOTOX®) are unique botulinum neurotoxin type A (BoNT/A)-derived drugs. IncobotulinumtoxinA utilizes the naked 150 kDa holotoxin portion of BoNT/A, whereas onabotulinumtoxinA uses the complete native 900 kDa complex as drug substance. On the basis of purportedly similar pharmacological characteristics, these formulations were evaluated for potency by LD50 and mouse Digit Abduction Score (DAS) bioassays. DAS was also used to assess antigenicity. Full-range DAS dose–response profiles were achieved with four lots of each product, with similar observations between lots for a given product. Between products, however, the mean DAS potency of incobotulinumtoxinA (ED50 range 7.0–10.2 U/kg) was significantly lower than that of onabotulinumtoxinA (ED50 range 4.4–6.4 U/kg), consistent with lower measured potencies in the LD50 assay for incobotulinumtoxinA (potency range 62–82 U). In assessments of DAS duration of effect at similar unit doses, the observed lower potency of incobotulinumtoxinA translated into decreased peak efficacy and dose effect over time (i.e. shorter duration). In contrast, at equi-efficacious doses yielding near-maximal DAS responses, both toxin formulations were uniformly inhibited in a statistically significant manner when preincubated with rabbit-derived, onabotulinumtoxinA-neutralizing antibodies, supporting the position that inhibition of 150 kDa holotoxin serves as the common basis for neutralization and, therefore, incobotulinumtoxinA would not be expected to be effective in onabotulinumtoxinA-immunoresistant subjects (and vice versa). Further, with lower lot-to-lot relative potency, incobotulinumtoxinA is not dose-equivalent or interchangeable with onabotulinumtoxinA, suggesting that various aspects of drug product formulation may influence observed pharmacology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aoki KR (2001) A comparison of the safety margins of botulinum neurotoxin serotypes A, B, and F in mice. Toxicon 39:1815–1820

    Article  PubMed  CAS  Google Scholar 

  • Aoki KR (2005) Review of a proposed mechanism for the antinociceptive action of botulinum toxin type A. Neurotoxicology 26:785–793

    Article  PubMed  CAS  Google Scholar 

  • Aoki KR, Francis J (2011) Updates on the antinociceptive mechanism hypothesis of botulinum toxin A. Parkinsonism Relat Disord 17(Suppl 1):S28–S33

    Article  PubMed  Google Scholar 

  • Argoff CE (2002) A focused review on the use of botulinum toxins for neuropathic pain. Clin J Pain 18(6 Suppl):S177–S181

    Article  PubMed  Google Scholar 

  • Aurora SK, Dodick DW, Turkel CC, DeGryse RE, Silberstein SD, Lipton RB, Diener HC, Brin MF, PREEMPT 1 Chronic Migraine Study Group (2010) OnabotulinumtoxinA for treatment of chronic migraine: results from the double-blind, randomized, placebo-controlled phase of the PREEMPT 1 trial. Cephalalgia 30(7):793–803 (Epub 2010 Mar 17)

    Article  PubMed  CAS  Google Scholar 

  • Benecke R (2009) Xeomin® in the treatment of cervical dystonia. Eur J Neurol 16(Suppl 2):6–10

    Article  PubMed  Google Scholar 

  • Benecke R (2012) Clinical relevance of botulinum toxin immunogenicity. Biodrugs 26(2):e1–e9

    Article  PubMed  CAS  Google Scholar 

  • Benecke R, Dressler D (2007) Botulinum toxin treatment of axial and cervical dystonia. Disabil Rehab 29(23):1769–1777

    Article  Google Scholar 

  • Blumenfeld A, Silberstein SD, Dodick DW, Aurora SK, Turkel CC, Binder WJ (2010) Method of injection of onabotulinumtoxinA for chronic migraine: a safe, well-tolerated, and effective treatment paradigm based on the PREEMPT clinical program. Headache 50(9):1406–1418

    Article  PubMed  Google Scholar 

  • Casale R, Tugnoli V (2008) Botulinum toxin for pain. Drugs R D 9:11–27

    Article  PubMed  CAS  Google Scholar 

  • Cui M, Li Z, You S, Khanijou S, Aoki KR (2002) Mechanism of the antinociceptive effect of subcutaneous BOTOX: inhibition of peripheral and central nociceptive processing. Naunyn Schmiedebergs Arch Pharmacol 365(Suppl 2):R17

    Google Scholar 

  • de Maio M (2008) Therapeutic uses of botulinum toxin: from facial palsy to autonomic disorders. Expert Opin Biol Ther 8:791–798

    Article  PubMed  Google Scholar 

  • Diener HC, Dodick DW, Aurora SK, Turkel CC, DeGryse RE, Lipton RB, Silberstein SD, Brin MF, PREEMPT 2 Chronic Migraine Study Group (2010) OnabotulinumtoxinA for treatment of chronic migraine: results from the double-blind, randomized, placebo-controlled phase of the PREEMPT 2 trial. Cephalalgia 30(7):804–814 (Epub 2010 Mar 17)

    Article  PubMed  CAS  Google Scholar 

  • Dodick DW, Turkel CC, DeGryse RE, Aurora SK, Silberstein SD, Lipton RB, Diener HC, Brin MF, PREEMPT Chronic Migraine Study Group (2010) OnabotulinumtoxinA for treatment of chronic migraine: pooled results from the double-blind, randomized, placebo-controlled phases of the PREEMPT clinical program. Headache 50(6):921–936 (Epub 2010 May 7)

    Article  PubMed  Google Scholar 

  • Dolly JO, Aoki KR (2006) The structure and mode of action of different botulinum toxins. Eur J Neurol 13(Suppl 4):1–9

    Google Scholar 

  • Dressler D (2009) Routine use of Xeomin® in patients previously treated with Botox®: long term results. Eur J Neurol 16(Suppl 2):2–5

    Article  PubMed  Google Scholar 

  • Dressler D (2010) Comparing Botox® and Xeomin® for axillar hyperhydrosis. J Neural Transm 117:317–319

    Article  PubMed  Google Scholar 

  • Dressler D (2012) Five-year experience with incobotulinumtoxinA (Xeomin®): the first botulinum toxin drug free of complexing proteins. Eur J Neurol 19(3):385–389 (Epub 2011 Oct 28)

    Google Scholar 

  • Dressler D, Benecke R (2007) Pharmacology of therapeutic botulinum toxin preparations. Disabil Rehabil 29:1761–1768

    Article  PubMed  Google Scholar 

  • Dressler D, Mander G, Fink K (2012) Measuring the potency labelling of onabotulinumtoxinA (Botox®) and incobotulinumtoxinA (Xeomin®) in an LD50 assay. J Neural Transm 119(1):13–15 (Epub 2011 Oct 5)

    Google Scholar 

  • Frevert J (2009a) Xeomin®: an innovative new botulinum toxin type A. Eur J Neurol 16(Suppl 2):11–13

    Google Scholar 

  • Frevert J (2009b) Xeomin is free from complexing proteins. Toxicon 54:697–701

    Article  PubMed  CAS  Google Scholar 

  • Frevert J (2010) Content of botulinum neurotoxin in Botox®/Vistabel®, Dysport®/Azzalure®, and Xeomin®/Bocouture®. Drugs RD 2(10):91–92

    Google Scholar 

  • Frevert J, Dressler D (2010) Complexing proteins in botulinum toxin type A drugs: a help or a hindrance? Biol Target Ther 4:325–332

    Google Scholar 

  • Hunt T, Clarke K (2009) Potency evaluation of a formulated drug product containing 150-kD botulinum neurotoxin type A. Clin Neuropharmacol 32:28–31

    Article  PubMed  CAS  Google Scholar 

  • Hunt T, Rupp D, Shimizu G, Tam K, Weidler J, Xie J (2010) Characterization of SNARE cleavage products generated by formulated botulinum neurotoxin type-A drug products. Toxins 2(8):2198–2212

    Article  PubMed  CAS  Google Scholar 

  • Jankovic J (2009) Clinical efficacy and tolerability of Xeomin® in the treatment of blepharospasm. Eur J Neurol 16(Suppl 2):14–18

    Google Scholar 

  • Jankovic J, Brin MF (1997) Botulinum toxin: historical perspective and potential new indications. Muscle Nerve Suppl 6:S129–S145

    Article  PubMed  CAS  Google Scholar 

  • Jost WH (2007) Efficacy and safety of botulinum neurotoxin type A free of complexing proteins (NT 201) in cervical dystonia and blepharospasm. Future Neurol 2(5):485–493

    Article  CAS  Google Scholar 

  • Jost WH, Blümel J, Grafe S (2007) Botulinum neurotoxin type A free of complexing proteins (Xeomin®) in focal dystonia. Drugs 67(5):669–683

    Article  PubMed  CAS  Google Scholar 

  • Lange O, Bigalke H, Dengler R, Wegner F, deGroot M, Wohlfarth K (2009) Neutralizing antibodies and secondary therapy failure after treatment with botulinum toxin type A: much ado about nothing? Clin Neuropharmacol 32:213–218

    Article  PubMed  CAS  Google Scholar 

  • Lietzow MA, Gielow ET, Le D, Zhang J, Verhagen MF (2008) Subunit stoichiometry of the Clostridium botulinum type A neurotoxin complex determined using denaturing capillary electrophoresis. Protein J 27:420–425

    Article  PubMed  CAS  Google Scholar 

  • Luvisetto S, Marinelli S, Cobianchi S, Pavone F (2007) Anti-allodynic efficacy of botulinum neurotoxin A in a model of neuropathic pain. Neuroscience 145:1–4

    Article  PubMed  CAS  Google Scholar 

  • Ney JP, Joseph KR (2007) Neurologic uses of botulinum neurotoxin type A. Neuropsychiatr Dis Treat 3:785–798

    PubMed  CAS  Google Scholar 

  • Park HJ, Lee Y, Lee J, Park C, Moon DE (2006) The effects of botulinum toxin A on mechanical and cold allodynia in a rat model of neuropathic pain. Can J Anaesth 53:470–477

    Article  PubMed  Google Scholar 

  • Querama E, Fuglsang-Frederiksen A, Jensen TS (2010) The role of botulinum toxin in management of pain: an evidence-based review. Curr Opin Anaesthesiol 23:602–610

    Article  Google Scholar 

  • Roggenkämper P, Jost WH, Bihari K, Comes G, Grafe S (2006) Efficacy and safety of a new botulinum toxin type A free of complexing proteins in the treatment of blepharospasm. J Neural Transm 113:303–312

    Article  PubMed  Google Scholar 

  • Schulte-Mattler WJ (2008) Use of botulinum toxin A in adult neurological disorders: efficacy, tolerability and safety. CNS Drugs 22:725–738

    Article  PubMed  CAS  Google Scholar 

  • Simpson L (2004) Identification of the major steps in botulinum toxin action. Ann Rev Pharmacol Toxicol 44:167–193

    Article  CAS  Google Scholar 

  • Singh SK (2011) Impact of product-related factors on immunogenicity of biotherapeutics. J Pharm Sci 100(2):354–387

    Article  PubMed  CAS  Google Scholar 

  • Thant ZS and Tan EK (2003) Emerging therapeutic applications of botulinum toxin. Med Sci Monit 9(2):RA40–RA48

    Google Scholar 

  • Wohlfarth K, Müller C, Sassin I, Comes G, Grafe S (2007) Neurophysiological double-blind trial of a botulinum neurotoxin type A free of complexing proteins. Clin Neuropharmacol 30:86–94

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Hunt or J. Francis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, M., Nicholson, G., Ardila, M.C. et al. Comparative evaluation of the potency and antigenicity of two distinct BoNT/A-derived formulations. J Neural Transm 120, 291–298 (2013). https://doi.org/10.1007/s00702-012-0854-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-012-0854-3

Keywords

Navigation