Skip to main content
Log in

Determining the extent and direction of introgression between three spruce species based on molecular markers from three genomes with different rates of gene flow

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Introgression frequently occurs between closely related plant species when there is incomplete reproductive isolation. However, few studies have been designed to examine the extent and direction of introgression from all three genomes, especially when they have different rates of gene flow. Conifers, in which chloroplast (cp), mitochondrial (mt) and nuclear (nr) genomes show contrasting rates of gene flow, provide a good model in which to carry out such a case study. Here we use data on sequence variation in 18 DNAs from three genomes for 311 individuals of 31 populations to investigate the extent and direction of introgressions between three spruce species in areas where they are sympatrically distributed. We found that one species seem to have introgressions derived from the other two species in areas of sympatric distribution; there were more introgressions from the maternally inherited mtDNA, which has the lowest rate of gene flow, and fewer introgressions from the bi-parentally inherited nrDNA. Further coalescent analysis of nrDNA population genetic data suggested that the species containing introgressions had experienced range expansion in the recent past while there was no such indication for the other two species. Our results support the hypotheses that introgressions occurred more frequently at genetic markers with lower rates of gene flow and that they usually took place from local species towards invading species that had undergone recent demographic expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnold ML, Tang S, Knapp SJ, Martin NH (2010) Asymmetric introgressive hybridization among louisiana iris species. Genes 1:9–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai WN, Liao WJ, Zhang DY (2010) Nuclear and chloroplast DNA phylogeography reveal two refuge areas with asymmetrical gene flow in a temperate walnut tree from East Asia. New Phytol 188:892–901

    Article  PubMed  Google Scholar 

  • Bouille M, Bousquet J (2005) Trans-species shared polymorphisms at orthologous nuclear gene loci among distant species in the conifer Picea (Pinaceae): implications for the long-term maintenance of genetic diversity in trees. Amer J Bot 92:63–73

    Article  Google Scholar 

  • Cahill JA, Green RE, Fulton TL, Stiller M, Jay F, Ovsyanikov N, Salamzade R, St John J, Stirling I, Slatkin M, Shapiro B (2013) Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution. PLOS Genet 9:e1003345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Kallman T, Gyllenstrand N, Lascoux M (2010) New insights on the speciation history and nucleotide diversity of three boreal spruce species and a Tertiary relict. Heredity 104:3–14

    Article  CAS  PubMed  Google Scholar 

  • Comes HP, Kadereit JW (1998) The effect of quaternary climatic changes on plant distribution and evolution. Trends Pl Sci 3:432–438

    Article  Google Scholar 

  • Cornuet JM, Raviqne V, Estoup A (2010) Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1. 0). BMC Bioinform 11:401

    Article  Google Scholar 

  • Currat M, Ruedi M, Petit RJ, Excoffier L (2008) The hidden side of invasions: massive introgression by local genes. Evolution 62:1908–1920

    PubMed  Google Scholar 

  • Du FK, Petit RJ, Liu JQ (2009) More introgression with less gene flow: chloroplast vs. mitochondrial DNA in the Picea asperata complex in China, and comparison with other conifers. Molec Ecol 18:1396–1407

    Article  CAS  Google Scholar 

  • Du FK, Peng XL, Liu JQ, Lascoux M, Hu FS, Petit RJ (2011) Direction and extent of organelle DNA introgression between two spruce species in the Qinghai-Tibetan Plateau. New Phytol 192:1024–1033

    Article  CAS  PubMed  Google Scholar 

  • Duvaux L, Belkhir K, Boulesteix M, Boursot P (2011) Isolation and gene flow: inferring the speciation history of European house mice. Molec Ecol 20:5248–5264

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Molec Ecol 14:2611–2620

    Article  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinf 1:47–50

    CAS  Google Scholar 

  • Fay JC, Wu CI (2000) Hitchhiking under positive darwinian selection. Genetics 155:1405–1413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzpatrick BM, Johnson JR, Kump DK, Shaffer HB, Smith JJ, Voss SR (2009) Rapid fixation of non-native alleles revealed by genome-wide SNP analysis of hybrid tiger salamanders. BMC Evol Biol 9:176

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu L, Li N, Mill RR (1999) Pinaceae. In: Wu ZY, Raven PH (eds) Flora of China, Science Press, Beijing, pp 11–52

    Google Scholar 

  • Gay L, Neubauer G, Zagalska-Neubauer M, Debain C, Pons JM, David P, Crochet PA (2007) Molecular and morphological patterns of introgression between two large white-headed gull species in a zone of recent secondary contact. Molec Ecol 16:3215–3227

    Article  CAS  Google Scholar 

  • Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, Patterson N, Li H, Zhai W, Fritz MH, Hansen NF, Durand EY, Malaspinas AS, Jensen JD, Marques-Bonet T, Alkan C, Prufer K, Meyer M, Burbano HA, Good JM, Schultz R, Aximu-Petri A, Butthof A, Hober B, Hoffner B, Siegemund M, Weihmann A, Nusbaum C, Lander ES, Russ C, Novod N, Affourtit J, Egholm M, Verna C, Rudan P, Brajkovic D, Kucan Z, Gusic I, Doronichev VB, Golovanova LV, Lalueza-Fox C, de la Rasilla M, Fortea J, Rosas A, Schmitz RW, Johnson PL, Eichler EE, Falush D, Birney E, Mullikin JC, Slatkin M, Nielsen R, Kelso J, Lachmann M, Reich D, Paabo S (2010) A draft sequence of the Neandertal genome. Science 328:710–722

    Article  CAS  PubMed  Google Scholar 

  • Heuertz M, Paoli ED, Kallman T, Larsson H, Jurman I, Morgante M, Lascoux M, Gyllenstrand N (2006) Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce [Picea abies (L.) Karst]. Genetics 174:2095–2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276

    Article  Google Scholar 

  • Hey J (2010) Isolation with migration models for more than two populations. Molec Biol Evol 27:905–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Molec Ecol Resources 9:1322–1332

    Article  Google Scholar 

  • Jarvis DI, Hodgkin T (1999) Wild relatives and crop cultivars: detecting natural introgression and farmer selection of new genetic combinations in agroecosystems. Molec Ecol 8:159–173

    Article  Google Scholar 

  • Lepais O, Petit RJ, Guichoux E, Lavabre JE, Alberto F, Kremer A, Gerber S (2009) Species relative abundance and direction of introgression in oaks. Molec Ecol 18:2228–2242

    Article  CAS  Google Scholar 

  • Li Y, Stocks M, Hemmila S, Kallman T, Zhu HT, Zhou YF, Chen J, Liu JQ, Lascoux M (2010) Demographic histories of four spruce (Picea) species of the Qinghai-Tibetan Plateau and neighboring areas inferred from multiple nuclear loci. Molec Biol Evol 27:1001–1014

    Article  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Lockwood JD, Aleksic JM, Zou JB, Wang J, Liu JQ, Renner SS (2013) A new phylogeny for the genus Picea from plastid, mitochondrial, and nuclear sequences. Molec Phylogen Evol 69:717–727

    Article  Google Scholar 

  • Martin NH, Willis JH (2007) Ecological divergence associated with mating system causes nearly complete reproductive isolation between sympatric Mimulus species. Evolution 61:68–82

    Article  PubMed  Google Scholar 

  • McGuire JA, Linkem CW, Koo MS, Hutchison DW, Lappin AK, Orange DI, Lemos-Espinal J, Riddle BR, Jaeger JR (2007) Mitochondrial introgression and incomplete lineage sorting through space and time: phylogenetics of crotaphytid lizards. Evolution 61:2879–2897

    Article  CAS  PubMed  Google Scholar 

  • Melo-Ferreira J, Boursot P, Suchentrunk F, Ferrand N, Alves PC (2005) Invasion from the cold past: extensive introgression of mountain hare (Lepus timidus) mitochondrial DNA into three other hare species in northern Iberia. Molec Ecol 14:2459–2464

    Article  CAS  Google Scholar 

  • Mogensen HL (1996) The hows and whys of cytoplasmic inheritance in seed plants. Amer J Bot 83:383–404

    Article  Google Scholar 

  • Neafsey DE, Lawniczak MK, Park DJ, Redmond SN, Coulibaly MB, Traore SF, Sagnon N, Costantini C, Johnson C, Wiegand RC, Collins FH, Lander ES, Wirth DF, Kafatos FC, Besansky NJ, Christophides GK, Muskavitch MA (2010) SNP genotyping defines complex gene-flow boundaries among African malaria vector mosquitoes. Science 330:514–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neale DB, Sederoff RR (1988) Inheritance and evolution of conifer organelle genomes. In: Hanover JW, Keathley DE (eds) Genetic manipulation of woody plants. Springer, US, pp 251–264

    Chapter  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annual Rev Ecol Evol Syst 37:187–214

    Article  Google Scholar 

  • Petit RJ, Vendramin GG (2007) Plant phylogeography based on organelle genes: an introduction. In: Weiss S, Ferrand N (eds) Phylogeography of southern European refugia, Springer, Netherlands, pp 23–97

    Chapter  Google Scholar 

  • Petit RJ, Bodénès C, Ducousso A, Roussel G, Kremer A (2004) Hybridization as a mechanism of invasion in oaks. New Phytol 161:151–164

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ran JH, Wei XX, Wang XQ (2006) Molecular phylogeny and biogeography of Picea (Pinaceae): implications for phylogeographical studies using cytoplasmic haplotypes. Molec Phylogen Evol 41:405–419

    Article  CAS  Google Scholar 

  • Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annual Rev Ecol Syst 27:83–109

    Article  Google Scholar 

  • Rieseberg LH, Kim SC, Randell RA, Whitney KD, Gross BL, Lexer C, Clay K (2007) Hybridization and the colonization of novel habitats by annual sunflowers. Genetica 129:149–165

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Molec Ecol Notes 4:137–138

    Article  Google Scholar 

  • Song Y, Endepols S, Klemann N, Richter D, Matuschka FR, Shih CH, Nachman MW, Kohn MH (2011) Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr Biol 21:1296–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teeter KC, Thibodeau LM, Gompert Z, Buerkle CA, Nachman MW, Tucker PK (2010) The variable genomic architecture of isolation between hybridizing species of house mice. Evolution 64:472–485

    Article  CAS  PubMed  Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Populat Biol 7:256–276

    Article  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating f-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Whitney KD, Randell RA, Rieseberg LH (2006) Adaptive introgression of herbivore resistance traits in the weedy sunflower Helianthus annuus. Amer Naturalist 167:794–807

    Article  Google Scholar 

  • Willyard A, Cronn R, Liston A (2009) Reticulate evolution and incomplete lineage sorting among the ponderosa pines. Molec Phylogen Evol 52:498–511

    Article  CAS  Google Scholar 

  • Wu CY (1987) Vegetation of China. China Science Press, Beijing

    Google Scholar 

  • Zeng K, Fu YX, Shi S, Wu CI (2006) Statistical tests for detecting positive selection by utilizing high-frequency variants. Genetics 174:1431–1439

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang DY (2014) Demographic model of admixture predicts symmetric introgression when a species expands into the range of another: a comment on Currat et al. (2008). J Syst Evol 52:35–39

    Article  Google Scholar 

  • Zhang Q, Chiang TY, George M, Liu JQ, Abbott RJ (2005) Phylogeography of the Qinghai-Tibetan Plateau endemic Juniperus przewalskii (Cupressaceae) inferred from chloroplast DNA sequence variation. Molec Ecol 14:3513–3524

    Article  CAS  Google Scholar 

  • Zhou YF, Abbott RJ, Jiang ZY, Du FK, Milne RI, Liu JQ (2010) Gene flow and species delimitation: a case study of two pine species with overlapping distributions in southeast China. Evolution 64:2342–2352

    CAS  PubMed  Google Scholar 

  • Zielinski P, Nadachowska-Brzyska K, Wielstra B, Szkotak R, Covaciu-Marcov SD, Cogalniceanu D, Babik W (2013) No evidence for nuclear introgression despite complete mtDNA replacement in the Carpathian newt (Lissotriton montandoni). Molec Ecol 22:1884–1903

    Article  CAS  Google Scholar 

  • Zou JB, Sun YS, Li L, Wang GN, Yue W, Lu ZQ, Wang Q, Liu JQ (2013) Population genetic evidence for speciation pattern and gene flow between Picea wilsonii, P. morrisonicola and P. neoveitchii. Ann Bot (Oxford) 112:1829–1844

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Lili Li for her help with experimental work. This research was supported by Grants from National Natural Science Foundation of China (30930072) and the Fundamental Research Funds for the Central Universities (lzujbky-2009-k05) and the International Collaboration 111 Projects of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianquan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Zhu Xiang-Yun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 523 kb)

Supplementary material 2 (PDF 124 kb)

Supplementary material 3 (NEX 128 kb)

Supplementary material 4 (NEX 132 kb)

Supplementary material 5 (NEX 122 kb)

Supplementary material 6 (NEX 145 kb)

Supplementary material 7 (NEX 91 kb)

Supplementary material 8 (NEX 144 kb)

Supplementary material 9 (NEX 120 kb)

Supplementary material 10 (NEX 152 kb)

Supplementary material 11 (NEX 100 kb)

Supplementary material 12 (NEX 121 kb)

Supplementary material 13 (NEX 109 kb)

Supplementary material 14 (NEX 109 kb)

Supplementary material 15 (NEX 68 kb)

Supplementary material 16 (NEX 21 kb)

Supplementary material 17 (NEX 29 kb)

Supplementary material 18 (PDF 122 kb)

Supplementary material 19 (PDF 118 kb)

Supplementary material 20 (PDF 118 kb)

Supplementary material 21 (PDF 120 kb)

Supplementary material 22 (PDF 122 kb)

Supplementary material 23 (PDF 130 kb)

Supplementary material 24 (PDF 130 kb)

Supplementary material 25 (PDF 129 kb)

Supplementary material 26 (PDF 122 kb)

Supplementary material 27 (PDF 114 kb)

Supplementary material 28 (PDF 725 kb)

Supplementary material 29 (PDF 1211 kb)

Supplementary material 30 (PDF 286 kb)

Supplementary material 31 (PDF 123 kb)

Supplementary material 32 (PDF 115 kb)

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Online Resource 1. The distribution of sampling localities for Picea meyeri, P. wilsonii and P. neoveitchii.

Online Resource 2. Sampling sites. The location and number of samples for P. wilsonii, P. neoveitchii and P. meyeri

Online Resource 3. Alignments used to produce phylogenetic relationships (4 cl)

Online Resource 4. Alignments used to produce phylogenetic relationships (EBS)

Online Resource 5. Alignments used to produce phylogenetic relationships (FT3)

Online Resource 6. Alignments used to produce phylogenetic relationships (GI)

Online Resource 7. Alignments used to produce phylogenetic relationships (M002)

Online Resource 8. Alignments used to produce phylogenetic relationships (M007D1)

Online Resource 9. Alignments used to produce phylogenetic relationships (PCH)

Online Resource 10. Alignments used to produce phylogenetic relationships (Sb16)

Online Resource 11. Alignments used to produce phylogenetic relationships (Sb29)

Online Resource 12. Alignments used to produce phylogenetic relationships (Sb62)

Online Resource 13. Alignments used to produce phylogenetic relationships (Se1364 )

Online Resource 14. Alignments used to produce phylogenetic relationships (Se1390)

Online Resource 15. Alignments used to produce phylogenetic relationships (xy1420)

Online Resource 16. Alignments used to produce phylogenetic relationships (cpDNA)

Online Resource 17. Alignments used to produce phylogenetic relationships (mtDNA)

Online Resource 18. Descriptions of prior settings for all parameters used in DIYABC

Online Resource 19. Variable sites of aligned sequences of three cpDNA fragments from which eleven chlorotypes were identified

Online Resource 20. Estimates of average gene diversity within populations (H S), total gene diversity (H T), interpopulation differentiation (G ST) and number of substitution types (N ST)

Online Resource 21. Variable sites of aligned sequences of two mtDNA fragments from which ten mitotypes were identified

Online Resource 22. Analysis of molecular variance (AMOVA) of cpDNA and mtDNA for three species

Online Resource 23. Nucleotide variation, haplotype diversity and neutrality tests for P. wilsonii across all loci

Online Resource 24. Nucleotide variation, haplotype diversity and neutrality tests for P. neoveitchii across all loci

Online Resource 25. Nucleotide variation, haplotype diversity and neutrality tests for P. meyeri across all loci

Online Resource 26. r 2 values at each nuclear locus as measured by DnaSP to analyze the linkage disequilibrium

Online Resource 27. Genetic divergence at thirteen nuclear loci among species based on pairwise comparisons: (a) P. wilsonii (b) P. neoveitchii and (c) P. meyeri

Online Resource 28. Estimated the most likely number of clusters (K) obtained with Structure using the distribution of DeltaKK), the posterior probability of the data given each K, for K 1–6. Each K is represented by 10 separate runs. Variation among runs was limited

Online Resource 29. Posterior probabilities of five competing scenarios for each species

Online Resource 30. Histories for two species pairs (for sampled and ancestral populations) represented as boxes

Online Resource 31. Genetic divergence based on analysis of molecular variance (AMOVA) of cpDNA and mtDNA between three species

Online Resource 32. Genetic divergence at three genomes between species based on pairwise comparisons: (a) P. wilsonii (b) P. neoveitchii and (c) P. meyeri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Lu, J., Yue, W. et al. Determining the extent and direction of introgression between three spruce species based on molecular markers from three genomes with different rates of gene flow. Plant Syst Evol 302, 691–701 (2016). https://doi.org/10.1007/s00606-016-1289-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-016-1289-3

Keywords

Navigation