Skip to main content
Log in

On the Cauchy problem of a new integrable two-component Novikov equation

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

This paper is devoted to a new integrable two-component Novikov equation with Lax pairs and bi-Hamiltonian structures. Ons the one hand, based on a generalized Ovsyannikov type theorem, we prove the existence and uniqueness of solutions in the Gevrey–Sobolev spaces with the lower bound of the lifespan, and show the continuity of the data-to-solution map. On the other hand, we prove that the strong solutions maintain corresponding properties at infinity within its lifespan provided the initial data decay exponentially and algebraically, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baouendi, M., Goulaouic, C.: Sharp estimates for analytic pseudodifferential operators and application to the Cauchy problems. J. Differ. Equ. 48, 241–268 (1983)

    MathSciNet  MATH  Google Scholar 

  2. Barostichi, F., Himonasb, A., Petronilho, G.: Autonomous Ovsyannikov theorem and applications to nonlocal evolution equations and systems. J. Funct. Anal. 270, 330–358 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Bona, J., Smith, R.: The initial-value problem for the Korteweg–de Vries equation. Phil. Trans. Roy. Soc. London Ser. A 278, 555–601 (1975)

    MathSciNet  MATH  Google Scholar 

  4. Bressan, A., Constantin, A.: Global dissipative solutions of the Camassa–Holm equation. Anal. Appl. 5, 1–27 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Bressan, A., Constantin, A.: Global conservative solutions of the Camassa–Holm equation. Arch. Ration. Mech. Anal. 183, 215–239 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Chemin, J.: Localization in Fourier space and Navier-Stokes system, phase space analysis of partial differential equations. In: Proceedings, CRM series, Pisa, pp. 53–136 (2004)

  7. Constantin, A.: Finite propagation speed for the Camassa–Holm equation. J. Math. Phys. 46, 023506 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Constantin, A.: On the scattering problem for the Camassa–Holm equation. Proc. R. Soc. Lond. A 457, 953–970 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Constantin, A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 23–535 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Constantin, A.: On the inverse spectral problem for the Camassa–Holm equation. J. Funct. Anal. 155, 352–363 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Constantin, A., Escher, J.: Particle trajectores in solitary water waves. Bull. Am. Math. Soc. 44, 423–431 (2007)

    MATH  Google Scholar 

  13. Constantin, A., Escher, J.: Analyticity of periodic traveling free surface water waves with vorticity. Ann. Math. 173, 559–568 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Constantin, A., Gerdjikov, V., Ivanov, R.I.: Inverse scattering transform for the Camassa–Holm equation. Inverse Prob. 22, 2197–2207 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Constantin, A., Kappeler, T., Kolev, B., Topalov, T.: On geodesic exponential maps of the virasoro group. Ann. Global Anal. Geom. 31, 155–180 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Constantin, A., Lannes, D.: The hydro-dynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 193, 165–186 (2009)

    MATH  Google Scholar 

  17. Constantin, A., McKean, H.P.: A shallow water equation on the circle. Comm. Pure Appl. Math. 52, 949–982 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    MathSciNet  MATH  Google Scholar 

  19. Constantin, A., Ivanov, R., Lenells, J.: Inverse scattering transform for the Degasperis–Procesi equation. Nonlinearity 23, 2559–2575 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Constantin, A., Strauss, W.: Stability of peakons. Comm. Pure Appl. Math. 53, 603–610 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Danchin, R.: A few remarks on the Camassa–Holm equation. Differ. Integr. Equ. 14, 953–988 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Danchin, R.: Fourier analysis methods for PDEs. Lecture Notes, 14 November (2003)

  23. Degasperis, A., Holm, D.D., Hone, A.N.W.: A new integrable equation with peakon solutions. Theor. Math. Phys. 133, 1461–72 (2002)

    MathSciNet  Google Scholar 

  24. Degasperis, A., Procesi, M.: Asymptotic integrability. In: Degasperis, A., Gaeta, G. (eds.) Symmetry and Perturbation Theory, pp. 23–37. World Scientific, Singapore (1999)

  25. Escher, J., Henry, D., Kolev, B., Lyons, T.: Two-component equations modelling water waves with constant vorticity. Ann. Mat. Pura Appl. 195, 249–271 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Foias, C., Temam, R.: Gevrey class regularity for the solutions of the Navier–Stokes equations. J. Funct. Anal. 87, 359–369 (1989)

    MathSciNet  MATH  Google Scholar 

  27. Fokas, A., Fuchssteiner, B.: Symplectic structures, their Backlund transformation and hereditary symmetries. Physica D 4, 47–66 (1981)

    MathSciNet  MATH  Google Scholar 

  28. Geng, X., Xue, B.: An extension of integrable peakon equations with cubic nonlinearity. Nonlinearity 22, 1847–1856 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Gui, G., Liu, Y.: On the global existence and wave-breaking criteria for the two-component Camassa–Holm system. J. Funct. Anal. 258, 4251–C4278 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. J. Funct. Anal. 74, 160–C197 (1987)

    MathSciNet  MATH  Google Scholar 

  31. Himonas, A., Mantzavinos, D.: The initial value problem for a Novikov system. J. Math. Phy. 57, 071503 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Henry, D.: Compactly supported solutions of the Camassa–Holm equation. J. Nonlinear Math. Phys. 12, 342–347 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Henry, D.: Persistence properties for a family of nonlinear partial differential equations. Nonlinear Anal. 70, 1565–1573 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Henry, D.: Persistence properties for the Degasperis–Procesi equation. J. Hyperbolic Differ. Equ. 5, 99–111 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Henry, D.: Infinite propagation speed for a two component Camassa–Holm equation. Discrete Contin. Dyn. Syst. Ser. B 12, 597–606 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Henry, D., Ivanov, R.: One-dimensional weakly nonlinear model equations for Rossby waves. Discrete Contin. Dyn. Syst. 34, 3025–3034 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Himonas, A., Misiolek, G.: Analyticity of the Cauchy problem for an integrable evolution equation. Math. Ann. 327, 575–584 (2003)

    MathSciNet  MATH  Google Scholar 

  38. Himonas, A., Holliman, C.: The Cauchy problem for the Novikov equation. Nonlinearity 25, 449–479 (2012)

    MathSciNet  MATH  Google Scholar 

  39. Himonas, A., Holliman, C.: The Cauchy problem for a generalized Camassa–Holm equation. Adv. Differ. Equ. 19, 161–200 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Himonas, A., Misiołek, G.: Non-uniform dependence on initial data of solutions to the Euler equations of hydrodynamics. Commun. Math. Phys. 296, 285–301 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Himonas, A., Misiołlek, G., Ponce, G., Zhou, Y.: Persistence properties and unique continuation of solutions of the Camassa–Holm equation. Commun. Math. Phys. 271, 511–522 (2007)

    MathSciNet  MATH  Google Scholar 

  42. Holden, H., Raynaud, X.: Dissipative solutions for the Camassa–Holm equation. Discrete Contin. Dyn. Syst. 24, 1047–1112 (2009)

    MathSciNet  MATH  Google Scholar 

  43. Holden, H., Raynaud, X.: Global conservative solutions of the Camassa–Holm equations—a Lagrangianpoiny of view. Comm. Partial Differ. Equ. 32, 1511–1549 (2007)

    MATH  Google Scholar 

  44. Holm, D.D., Staley, M.F.: Wave structure and nonlinear balances in a family of evolutionary PDEs. SIAM J. Appl. Dyn. Syst. 2, 323–380 (2003)

    MathSciNet  MATH  Google Scholar 

  45. Home, A.N.W., Wang, J.P.: Integrable peakon equations with cubic nonlinearity. J. Phys. A 41, 372002 (2008)

    MathSciNet  MATH  Google Scholar 

  46. Hone, W., Lundmark, H., Szmigielski, J.: Explicit multipeakon solutions of Novikov cubically nonlinear integrable Camassa–Holm type equation. Dyn. Partial Differ. Equ. 6, 253–289 (2009)

    MathSciNet  MATH  Google Scholar 

  47. Ivanov, R.: Two-component integrable systems modelling shallow water waves: the constant vorticity case. Wave Motion 46, 389–396 (2009)

    MathSciNet  MATH  Google Scholar 

  48. Hu, Q., Qiao, Z.: Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function, arXiv:1511.03315 (2015)

  49. Jiang, Z., Ni, L.: Blow-up phenomenon for the integrable Novikov equation. J. Math. Anal. Appl. 385, 551–558 (2012)

    MathSciNet  MATH  Google Scholar 

  50. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)

    MathSciNet  MATH  Google Scholar 

  51. Lai, S., Wu, Y.: The local well-posedness and existence of weak solutions for ageneralized Camassa–Holm equation. J. Differ. Equ. 248, 2038–2063 (2010)

    MATH  Google Scholar 

  52. Lenells, J.: Traveling wave solutions of the Degasperis–Procesi equation. J. Math. Anal. Appl. 306, 72–82 (2005)

    MathSciNet  MATH  Google Scholar 

  53. Li, H.: Two-component generalizations of the Novikov equation. J. Nonlin. Math. Phy. 26, 390–403 (2019)

    MathSciNet  MATH  Google Scholar 

  54. Liu, X., Yin, Z.: Loca lwell-posedness and stability of peakons for a generalized Dullin–Gottwald–Holm equation. Nonlinear Anal. 74, 2497–2507 (2011)

    MathSciNet  MATH  Google Scholar 

  55. Li, H., Liu, Q.P.: On bi-Hamiltonian structure of two-component Novikov equation. Phys. Lett. A 377, 257–281 (2013)

    MathSciNet  MATH  Google Scholar 

  56. Lundmark, H., Szmigielski, J.: Multi-peakon solutions of the Degasperis–Procesi equation. Inverse Prob. 21, 1553–1570 (2005)

    MATH  Google Scholar 

  57. Lyons, T.: Particle trajectories in extreme Stokes waves over infinite depth. Discrete Contin. Dyn. Syst. 34, 3095–3107 (2014)

    MathSciNet  MATH  Google Scholar 

  58. Lyons, T.: The pressure distribution in extreme Stokes waves. Nonlinear Anal. Real World Appl. 31, 77–87 (2016)

    MathSciNet  MATH  Google Scholar 

  59. Luo, W., Yin, Z.: Gevrey regularity and analyticity for Camassa–Holm type systems. Ann. Sc. Norm. Super. Pisa Cl. Sci. 18, 1061–1079 (2018)

    MathSciNet  MATH  Google Scholar 

  60. Matsuno, Y.: Multisoliton solutions of the Degasperis–Procesi equation and their peakon limit. Inverse Prob. 19, 1241–1245 (2003)

    Google Scholar 

  61. Misiolek, G.A.: Shallow water equation as a geodesic flow on the Bott-Virasoro group. J. Geom. Phys. 24, 203–208 (1998)

    MathSciNet  MATH  Google Scholar 

  62. Ni, L., Zhou, Y.: Well-posedness and persistence properties for the Novikov equation. J. Differ. Equ. 250, 3002–3021 (2011)

    MathSciNet  MATH  Google Scholar 

  63. Ni, L., Zhou, Y.: A new asymptotic behavior of solutions to the Camassa–Holm equation. Proc. Am. Math. Soc. 140, 607–614 (2012)

    MathSciNet  MATH  Google Scholar 

  64. Qu, C., Fu, Y.: On the Cauchy problem and peakons of a two-component Novikov system. Sci. China Math. (2020). https://doi.org/10.1007/s11425-019-9557-6

    Article  Google Scholar 

  65. Novikov, V.: Generalization of the Camassa–Holm equation. J. Phys. A 42, 342002 (2009)

    MathSciNet  MATH  Google Scholar 

  66. Taylor, M.: Partial Differential Equations III, Nonlinear Equations. Springer, Berlin (1996)

    Google Scholar 

  67. Tiglay, F.: The periodic Cauchy problem for Novikov equation. Int. Math. Res. Notices 2011, 4633–4648 (2011)

    MathSciNet  MATH  Google Scholar 

  68. Toland, J.F.: Stokes waves, Topol. Methods Nonlinear Anal. 7, 1–48 (1996)

    MathSciNet  MATH  Google Scholar 

  69. Vakhnenko, V.O., Parkes, E.J.: Periodic and solitary-wave solutions of the Degasperis–Procesi equation. Chaos Solitons Fractals 20, 1059–1073 (2004)

    MathSciNet  MATH  Google Scholar 

  70. Wu, X., Yin, Z.: Well-posedness and global existence for the Novikov equation. Annali Sc. Norm. Sup. Pisa. X I, 707–727 (2012)

    MathSciNet  MATH  Google Scholar 

  71. Wu, X., Yin, Z.: Global weak solutions for the Novikov equation. J. Phys. A 44, 055202 (2011)

    MathSciNet  MATH  Google Scholar 

  72. Xia, B., Qiao, Z.: A new two-component integrable system with peakon solutions. In: Proceedings of the Royal Society A: Math. Phys. Engin., vol. 471, pp. 20140750 (2015)

  73. Xia, B., Qiao, Z., Zhou, R.: A synthetical two-Component model with peakon solutions. Stud. Appl. Math. 135, 248–276 (2015)

    MathSciNet  MATH  Google Scholar 

  74. Yan, K., Qiao, Z., Yin, Z.: Qualitative analysis for a new integrable two-component Camassa–Holm system with peakon and weak kink solutions. Commun. Math. Phys. 336, 581–617 (2015)

    MathSciNet  MATH  Google Scholar 

  75. Yan, W., Li, Y., Zhang, Y.: Global existence and blow-up phenomena for the weakly dissipative Novikov equation. Nonlinear Anal. 75, 2464–2473 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of Mi is partially supported by NSF of China (11671055). The work of Huang is partially supported by NSF of China (11971067,11631008,11771183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Mi.

Additional information

Communicated by Adrian Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, Y., Huang, D. On the Cauchy problem of a new integrable two-component Novikov equation. Monatsh Math 193, 361–381 (2020). https://doi.org/10.1007/s00605-020-01430-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-020-01430-7

Keywords

Mathematics Subject Classification

Navigation