Skip to main content
Log in

Construction of ratiometric fluorescence MIPs probe for selective detection of tetracycline based on passion fruit peel carbon dots and europium

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A new type of ratiometric molecularly imprinted fluorescence probe (B-CQDs@Eu/MIPs) based on biomass carbon quantum dots (B-CQDs) and europium ions (Eu3+) has been prepared to recognize and detect tetracycline (TC). In the experiment, the fluorescent material B-CQDs were prepared using passion fruit peels through microwave-assisted method, which by the meantime achieves the reuse of biomass waste. TC can block the transition of some parts of electrons in the prepared B-CQDs from the excited state to the ground state, resulting in the weakening of its blue light (Ex = 394 nm, Em = 457 nm), while TC can be chelated by Eu3+ and emit red characteristic fluorescence (Ex = 394 nm, Em = 620 nm) due to the antenna effect. Thus, a ratiometric fluorescence response to TC is the result of the combined B-CQD and Eu3+ . Based on this, we established the ratiometric fluorescent molecularly imprinted (MIP) probe for the detection of TC. The prepared B-CQDs@Eu/MIPs is aimed at catching the fluorescence changes of target tetracycline (TC) sensitively with the special combination of the specific recognition cavities and TC. The linear fluorescence quenching range of TC in milk using the fluorescent probe was 25–2000 nM, and the detection limit was 7.9 nM. The recoveries of this method for TC were 94.2–103.7%, and the relative standard deviations (RSDs) were 1.5–5.3%. Owing to the predetermined nature of MIP technology and the special response of ratio fluorescence, the interference of common substances is eliminated completely, which greatly improved the selectivity of its practical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. El Hassani NEA, Baraket A, Boudjaoui S, Tenório Neto ET, Bausells J, El Bari N, Bouchikhi B, Elaissari A, Errachid A, Zine N (2019) Development and application of a novel electrochemical immunosensor for tetracycline screening in honey using a fully integrated electrochemical bio-MEMS. Biosens Bioelectron 130:330–337. https://doi.org/10.1016/j.bios.2018.09.052

    Article  CAS  Google Scholar 

  2. Wu T, Xue Q, Liu F, Zhang J, Zhou C, Cao J, Chen H (2019) Mechanistic insight into interactions between tetracycline and two iron oxide minerals with different crystal structures. Chem Eng J 366:577–586. https://doi.org/10.1016/j.cej.2019.02.128

    Article  CAS  Google Scholar 

  3. Liu X, Zhang Z, Peng J, He Y (2014) High-performance liquid chromatography with resonance Rayleigh scattering detection for determining four tetracycline antibiotics. Anal Methods 6:9361–9366. https://doi.org/10.1039/C4AY01747A

    Article  CAS  Google Scholar 

  4. Deng B, Xu Q, Lu H, Ye L, Wang Y (2012) Pharmacokinetics and residues of tetracycline in crucian carp muscle using capillary electrophoresis on-line coupled with electrochemiluminescence detection. Food Chem 134:2350–2354. https://doi.org/10.1016/j.foodchem.2012.03.117

    Article  CAS  PubMed  Google Scholar 

  5. Han SQ, Liu EB, Li H (2006) Determination of tetracycline, chlortetracycline and oxytetracycline by flow injection with inhibitory chemiluminescence detection using copper (II) as a probe ion. Luminescence 21:106–111. https://doi.org/10.1002/bio.893

    Article  CAS  PubMed  Google Scholar 

  6. Jonnalagadda M, Prasad VB, Raghu AV (2021) Synthesis of composite nanopowder through Mn doped ZnS-CdS systems and its structural, optical properties. J Mol Struct 1230:129875. https://doi.org/10.1016/j.molstruc.2021.129875

    Article  CAS  Google Scholar 

  7. Mathew T, Sree RA, Aishwarya S, Kounaina K, Patil AG, Satapathy P, Hudeda SP, More SS, Muthucheliyan K, Kumar TN, Raghu AV, Reddy KR, Zameer F (2020) Graphene-based functional nanomaterials for biomedical and bioanalysis application. FlatChem 23:100184. https://doi.org/10.1016/j.flatc.2020.100184

    Article  CAS  Google Scholar 

  8. Kannan K, Radhika D, Sadasivuni KK, Reddy KR, Raghu AV (2020) Nanostructured metal oxides and its hybrids for photocatalytic and biomedical applications. Adv Colloid Interfac 281:102178. https://doi.org/10.1016/j.cis.2020.102178

    Article  CAS  Google Scholar 

  9. Hodala JL, Moon DJ, Reddy KR, Reddy CV, Kumar TN, Ahamed MI, Raghu AV (2021) Catalyst design for maximizing C5+ yields during Fischer-Tropsch synthesis. Int J Hydrogen Energ 46:3289–3301. https://doi.org/10.1016/j.ijhydene.2019.12.021

    Article  CAS  Google Scholar 

  10. Basavarajappa PS, Patil SB, Ganganagappa N, Reddy KR, Ahamed MI, Raghu AV, Reddy CV (2020) Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int J Hydrogen Energ 45:7764–7778. https://doi.org/10.1016/j.ijhydene.2019.07.241

    Article  CAS  Google Scholar 

  11. Cao BM, Yuan C, Liu BH, Jiang CL, Guan GJ, Han MY (2013) Ratiometric fluorescence detection of mercuric ion based on the nanohybrid of fluorescence carbon dots and quantum dots. Anal Chim Acta 786:146–152. https://doi.org/10.1016/j.aca.2013.05.015

    Article  CAS  PubMed  Google Scholar 

  12. Liu Q, Ma C, Liu XP, Wei YP, Mao CJ, Zhu JJ (2017) A novel electrochemiluminescence biosensor for the detection of microRNAs based on a DNA functionalized nitrogen doped carbon quantum dots as signal enhancers. Biosens Bioelectron 92:273–279. https://doi.org/10.1016/j.bios.2017.02.027

    Article  CAS  PubMed  Google Scholar 

  13. Zhu AW, Qu Q, Shao XL, Kong B, Tian Y (2012) Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions. Angew Chem 51:7185–7189. https://doi.org/10.1002/anie.201109089

    Article  CAS  Google Scholar 

  14. Yang WN, Zhang H, Lai JX, Peng XY, Hu YP, Gu W, Ye L (2018) Carbon dots with red-shifted photoluminescence by fluorine doping for optical bio-imaging. Carbon 128:78–85. https://doi.org/10.1016/j.carbon.2017.11.069

    Article  CAS  Google Scholar 

  15. Liu ZX, Chen BB, Liu M, Zhou H, Huang C (2017) Cu(I)-doped carbon quantum dots with zigzag edge structure for high efficient catalysis of azide-alkyne cycloadditions. Green Chem 19:1494–1498. https://doi.org/10.1039/C6GC03288E

    Article  CAS  Google Scholar 

  16. Xu HY, Zhang KN, Liu QS, Liu Y, Xie MX (2017) Visual and fluorescent detection of mercury ions by using a dually emissive ratiometric nanohybrid containing carbon dots and CdTe quantum dots. Microchim Acta 184:1199–1206. https://doi.org/10.1007/s00604-017-2099-1

    Article  CAS  Google Scholar 

  17. Rao HB, Liu W, He KQ, Zhao S, Lu ZW, Zhang SX, Sun MM, Zou P, Wang XX, Zhao QB, Wang Y, Liu T (2020) Smartphone-based fluorescence detection of Al3+ and H2O based on the use of dual-emission biomass carbon dots. ACS Sustain Chem Eng 8:8857–8867. https://doi.org/10.1021/acssuschemeng.0c03354

    Article  CAS  Google Scholar 

  18. Arabi M, Ostovan A, Bagheri AR, Guo X, Wang L, Li J, Wang X, Li B, Chen L (2020) Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. TrAC Trends Anal Chem 128:115923. https://doi.org/10.1016/j.trac.2020.115923

    Article  CAS  Google Scholar 

  19. Arabi M, Ostovan A, Bagheri AR, Guo X, Li J, Ma J, Chen L (2020) Hydrophilic molecularly imprinted nanospheres for the extraction of rhodamine B followed by HPLC analysis: a green approach and hazardous waste elimination. Talanta 215:120933. https://doi.org/10.1016/j.talanta.2020.120933

    Article  CAS  PubMed  Google Scholar 

  20. Gholami H, Ghaedi M, Ostovan A, Arabi M, Bagheri AR (2019) Preparation of hollow porous molecularly imprinted and aluminum(III) doped silica nanospheres for extraction of the drugs valsartan and losartan prior to their quantitation by HPLC. Microchim Acta 186:702. https://doi.org/10.1007/s00604-019-3794-x

    Article  CAS  Google Scholar 

  21. Arabi M, Ostovan A, Zhang Z, Wang Y, Mei R, Fu L, Wang X, Ma J, Chen L (2021) Label-free SERS detection of Raman-inactive protein biomarkers by Raman reporter indicator: toward ultrasensitivity and universality. Biosens Bioelectron 174:112825. https://doi.org/10.1016/j.bios.2020.112825

    Article  CAS  PubMed  Google Scholar 

  22. Kazemifard N, Ensafi AA, Rezaei B (2020) Green synthesized carbon dots embedded in silica molecularly imprinted polymers, characterization and application as a rapid and selective fluorimetric sensor for determination of thiabendazole in juices. Food Chem 310:125812. https://doi.org/10.1016/j.foodchem.2019.125812

    Article  CAS  PubMed  Google Scholar 

  23. Sun X, Liu Y, Niu N, Chen L (2019) Synthesis of molecularly imprinted fluorescent probe based on biomass-derived carbon quantum dots for detection of mesotrione. Anal Bioanal Chem 411(21):5519–5530. https://doi.org/10.1007/s00216-019-01930-y

    Article  CAS  PubMed  Google Scholar 

  24. Song YH, Chen JY, Hu DQ, Liu FF, Li P, Li HB, Chen SH, Tan HL, Wang L (2015) Ratiometric fluorescent detection of biomakers for biological warfare agents with carbon dots chelated europium-based nanoscale coordination polymers. Sensors Actuators B Chem 221:586–592. https://doi.org/10.1016/j.snb.2015.07.008

    Article  CAS  Google Scholar 

  25. Li GY, Tong CL (2020) Dual-functional lanthanide metal organic frameworks for visual and ultrasensitive ratiometric fluorescent detection of phosphate based on aggregation-induced energy transfer. Anal Chim Acta 1133:11–19. https://doi.org/10.1016/j.aca.2020.07.066

    Article  CAS  PubMed  Google Scholar 

  26. Lei H, Qi C, Chen X, Zhang T, Xu L, Liu B (2019) Ratiometric fluorescence determination of the anthrax biomarker 2,6-dipicolinic acid using a Eu3+/Tb3+-doped nickel coordination polymer. New J Chem 43:18259–18267. https://doi.org/10.1039/C9NJ04501E

    Article  CAS  Google Scholar 

  27. Thangaraja B, Solomonb PR, Rangan S (2019) Synthesis of carbon quantum dots with special reference to biomass as a source -a review. Curr Pharm Design 25:1455–1476. https://doi.org/10.2174/1381612825666190618154518

    Article  CAS  Google Scholar 

  28. Lu J, Yang JX, Wang JZ, Lim AL, Wang S, Loh KP (2009) One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3:2367–2375. https://doi.org/10.1021/nn900546b

    Article  CAS  PubMed  Google Scholar 

  29. Raghu AV, Gadaginamath GS, Mallikarjuna NN, Aminabhavi TM (2006) Synthesis and characterization of novel Polyureas based on benzimidazoline-2-one and benzimidazoline-2-thione hard segments. J Appl Polym Sci 100:576–583. https://doi.org/10.1002/app.23334

    Article  CAS  Google Scholar 

  30. Shen LM, Chen ML, Hu LL, Chen XW, Wang JH (2013) Growth and stabilization of silver nanoparticles on carbon dots and sensing application. Langmuir 29:16135–16140. https://doi.org/10.1021/la404270w

    Article  CAS  PubMed  Google Scholar 

  31. Raghu AV, Gadaginamath GS, Aminabhavi TM (2005) Synthesis and characterization of novel polyurethanes based on 1,3-bis(hydroxymethyl) benzimidazolin-2-one and 1,3-bis(hydroxymethyl) benzimidazolin-2-thione hard segments. J Appl Polym Sci 98:2236–2244. https://doi.org/10.1002/app.22434

    Article  CAS  Google Scholar 

  32. Zhu SJ, Meng QN, Wang L, Zhang JH, Song YB, Jin H, Zhang K, Sun HC, Wang HY, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed 52:3953–3957. https://doi.org/10.1002/anie.201300519

    Article  CAS  Google Scholar 

  33. Wei FD, Xu GH, Wu YZ, Wang X, Yang J, Liu LP, Zhou P, Hu Q (2016) Molecularly imprinted polymers on dual-color quantum dots for simultaneous detection of norepinephrine and epinephrine. Sensors Actuators B Chem 229:38–46. https://doi.org/10.1016/j.snb.2016.01.113

    Article  CAS  Google Scholar 

  34. Wu TW, Xue Q, Liu F, Zhang J, Zhou CS, Cao JW, Chen HH (2019) Mechanistic insight into interactions between tetracycline and two iron oxide minerals with different crystal structures. Chem Eng J 366:577–586. https://doi.org/10.1016/j.cej.2019.02.128

    Article  CAS  Google Scholar 

Download references

Funding

This project was funded by the Natural Science Foundation of Heilongjiang Province (B2008001), Fundamental Research Funds for the Central Universities (2572017 EB08), 111 Project (B20088), Heilongjiang Touyan Innovation Team Program (Tree Genetics and Breeding Innovation Team), Heilongjiang Postdoctoral Fund (LBH-Z16009), and China Postdoctoral Science Foundation (2016 M591501, 2017 T100218).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ligang Chen or Na Niu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 4013 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Jiang, M., Chen, L. et al. Construction of ratiometric fluorescence MIPs probe for selective detection of tetracycline based on passion fruit peel carbon dots and europium. Microchim Acta 188, 297 (2021). https://doi.org/10.1007/s00604-021-04929-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04929-4

Keywords

Navigation