Skip to main content
Log in

Two-dimensional inorganic nanosheets: production and utility in the development of novel electrochemical (bio)sensors and gas-sensing applications

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This review (with 178 references) focuses on inorganic layered materials (ILMs) and the use of their two-dimensional nanosheets in the development of novel electrochemical (bio)sensors, analytical devices, and gas-phase sensing applications. The text is organized in three main sections including the presentation of the most important families of ILMs, a comprehensive outline of various “bottom-up”, “top-down,” and hydro(solvo)thermal methods that have been used for the production of ILM nanosheets, and finally an evaluative survey on their utility for the determination of analytes with interest in different sectors of contemporary analysis. Critical discussion on the effect of the production method on their electronic properties, the suitability of each nanomaterial in different sensing technologies along with an assessment of the performance of the (bio)sensors and devices that have been proposed within the last 5 years, is enclosed. The perspectives of further improving the utility of 2D inorganic nanosheets in sensing applications, in real-world samples, are also discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2013) Liquid exfoliation of layered materials. Science 340:1226419. https://doi.org/10.1126/science.1226419

    Article  CAS  Google Scholar 

  2. Chhowalla M, Liu Z, Zhang H (2015) Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem Soc Rev 44:2584–2586. https://doi.org/10.1039/c5cs90037a

    Article  CAS  PubMed  Google Scholar 

  3. Murphy DW, Hull GW (1975) Monodispersed tantalum disulfide and adsorption complexes with cations. J Chem Phys 62:973–978. https://doi.org/10.1063/1.430513

    Article  CAS  Google Scholar 

  4. Sasaki T, Watanabe M, Hashizume H, Yamada H, Nakazawa H (1996) Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. Pairwise association of nanosheets and dynamic reassembling process initiated from it Journal of the American Chemical Society 118:8329–8335. https://doi.org/10.1021/ja960073b

    Article  CAS  Google Scholar 

  5. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  6. Cheng L, Huang W, Gong Q, Liu C, Liu Z, Li Y, Dai H (2014) Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction. Angewandte Chemie - International Edition 53:7860–7863. https://doi.org/10.1002/anie.201402315

    Article  CAS  PubMed  Google Scholar 

  7. Jeong S, Yoo D, Jang JT, Kim M, Cheon J (2012) Well-defined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols. J Am Chem Soc 134:18233–18236. https://doi.org/10.1021/ja3089845

    Article  CAS  PubMed  Google Scholar 

  8. Smith RJ, King PJ, Lotya M, Wirtz C, Khan U, de S, O'Neill A, Duesberg GS, Grunlan JC, Moriarty G, Chen J, Wang J, Minett AI, Nicolosi V, Coleman JN (2011) Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv Mater 23:3944–3948. https://doi.org/10.1002/adma.201102584

    Article  CAS  PubMed  Google Scholar 

  9. Coleman JN, Lotya M, O’Neill A et al (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571. https://doi.org/10.1126/science.1194975

    Article  CAS  PubMed  Google Scholar 

  10. Komsa HP, Krasheninnikov AV (2012) Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles. Physical Review B - Condensed Matter and Materials Physics 86:1–6. https://doi.org/10.1103/PhysRevB.86.241201

    Article  CAS  Google Scholar 

  11. Dral AP, ten Elshof JE (2018) 2D metal oxide nanoflakes for sensing applications: review and perspective. Sensors Actuators B Chem 272:369–392. https://doi.org/10.1016/j.snb.2018.05.157

    Article  CAS  Google Scholar 

  12. Gogotsi Y, Anasori B (2019) The rise of MXenes. ACS Nano 13:8491–8494. https://doi.org/10.1021/acsnano.9b06394

    Article  CAS  PubMed  Google Scholar 

  13. Hartman T, Sofer Z (2019) Beyond graphene: chemistry of group 14 graphene analogues: silicene, germanene, and stanene. ACS Nano 13:8566–8576. https://doi.org/10.1021/acsnano.9b04466

    Article  CAS  PubMed  Google Scholar 

  14. Chia X, Pumera M (2018) Characteristics and performance of two-dimensional materials for electrocatalysis. Nature Catalysis 1:909–921. https://doi.org/10.1038/s41929-018-0181-7

    Article  CAS  Google Scholar 

  15. Pumera M, Sofer Z (2017) 2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus. Adv Mater 29:1605299. https://doi.org/10.1002/adma.201605299

    Article  CAS  Google Scholar 

  16. Bhimanapati GR, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano MS, Cooper VR, Liang L, Louie SG, Ringe E, Zhou W, Kim SS, Naik RR, Sumpter BG, Terrones H, Xia F, Wang Y, Zhu J, Akinwande D, Alem N, Schuller JA, Schaak RE, Terrones M, Robinson JA (2015) Recent advances in two-dimensional materials beyond graphene. ACS Nano 9:11509–11539. https://doi.org/10.1021/acsnano.5b05556

    Article  CAS  PubMed  Google Scholar 

  17. Tsai HL, Heising J, Schindler JL, Kannewurf CR, Kanatzidis MG (1997) Exfoliated-restacked phase of WS2. Chem Mater 9:879–882. https://doi.org/10.1021/cm960579t

    Article  CAS  Google Scholar 

  18. Kostarelos K (2016) Translating graphene and 2D materials into medicine. Nature Reviews Materials 1:1–2. https://doi.org/10.1038/natrevmats.2016.84

    Article  CAS  Google Scholar 

  19. Zhang X, Hou L, Ciesielski A, Samorì P (2016) 2D materials beyond graphene for high-performance energy storage applications. Adv Energy Mater 6:1600671. https://doi.org/10.1002/aenm.201600671

    Article  CAS  Google Scholar 

  20. Xue Y, Zhang Q, Wang W, Cao H, Yang Q, Fu L (2017) Opening two-dimensional materials for energy conversion and storage: a concept. Adv Energy Mater 7:1–23. https://doi.org/10.1002/aenm.201602684

    Article  CAS  Google Scholar 

  21. Deng D, Novoselov KS, Fu Q, Zheng N, Tian Z, Bao X (2016) Catalysis with two-dimensional materials and their heterostructures. Nat Nanotechnol 11:218–230. https://doi.org/10.1038/nnano.2015.340

    Article  CAS  PubMed  Google Scholar 

  22. Anichini C, Czepa W, Pakulski D, Aliprandi A, Ciesielski A, Samorì P (2018) Chemical sensing with 2D materials. Chem Soc Rev 47:4860–4908. https://doi.org/10.1039/c8cs00417j

    Article  CAS  PubMed  Google Scholar 

  23. Cheng L, Wang X, Gong F, Liu T, Liu Z (2020) 2D nanomaterials for cancer theranostic applications. Adv Mater 32:1–23. https://doi.org/10.1002/adma.201902333

    Article  CAS  Google Scholar 

  24. Li D, Gong Y, Chen Y, Lin J, Khan Q, Zhang Y, Li Y, Zhang H, Xie H (2020) Recent progress of two-dimensional thermoelectric materials. Nano-Micro Letters 12:36. https://doi.org/10.1007/s40820-020-0374-x

    Article  Google Scholar 

  25. Chang YM, Lin HW, Li LJ, Chen HY (2020) Two-dimensional materials as anodes for sodium-ion batteries. Materials Today Advances 6:100054. https://doi.org/10.1016/j.mtadv.2020.100054

    Article  Google Scholar 

  26. Tao H, Fan Q, Ma T, Liu S, Gysling H, Texter J, Guo F, Sun Z (2020) Two-dimensional materials for energy conversion and storage. Prog Mater Sci 111:100637. https://doi.org/10.1016/j.pmatsci.2020.100637

    Article  CAS  Google Scholar 

  27. Faraji M, Yousefi M, Yousefzadeh S, Zirak M, Naseri N, Jeon TH, Choi W, Moshfegh AZ (2019) Two-dimensional materials in semiconductor photoelectrocatalytic systems for water splitting. Energy Environ Sci 12:59–95. https://doi.org/10.1039/c8ee00886h

    Article  CAS  Google Scholar 

  28. Chen Y, Yang K, Jiang B, Li J, Zeng M, Fu L (2017) Emerging two-dimensional nanomaterials for electrochemical hydrogen evolution. J Mater Chem A 5:8187–8208. https://doi.org/10.1039/c7ta00816c

    Article  CAS  Google Scholar 

  29. Lazanas AC, Tsirka K, Paipetis AS, Prodromidis MI (2020) 2D bismuthene/graphene modified electrodes for the ultra-sensitive stripping voltammetric determination of lead and cadmium. Electrochim Acta 336:135726. https://doi.org/10.1016/j.electacta.2020.135726

    Article  CAS  Google Scholar 

  30. Tseliou F, Avgeropoulos A, Falaras P, Prodromidis MI (2017) Low dimensional Bi2Te3-graphene oxide hybrid film-modified electrodes for ultra-sensitive stripping voltammetric detection of Pb(II) and Cd(II). Electrochim Acta 231:230–237. https://doi.org/10.1016/j.electacta.2017.02.058

    Article  CAS  Google Scholar 

  31. Govindasamy M, Wang SF, Jothiramalingam R, Noora Ibrahim S, al-lohedan HA (2019) A screen-printed electrode modified with tungsten disulfide nanosheets for nanomolar detection of the arsenic drug roxarsone. Microchim Acta 186:420. https://doi.org/10.1007/s00604-019-3535-1

    Article  CAS  Google Scholar 

  32. Ge Y, Qu M, Xu L, Wang X, Xin J, Liao X, Li M, Li M, Wen Y (2019) Phosphorene nanocomposite with high environmental stability and antifouling capability for simultaneous sensing of clenbuterol and ractopamine. Microchim Acta 186:836. https://doi.org/10.1007/s00604-019-3908-5

    Article  CAS  Google Scholar 

  33. Yang T, Yu R, Chen H, Yang R, Wang S, Luo X, Jiao K (2016) Electrochemical preparation of thin-layered molybdenum disulfide-poly(m-aminobenzenesulfonic acid) nanocomposite for TNT detection. J Electroanal Chem 781:70–75. https://doi.org/10.1016/j.jelechem.2016.09.009

    Article  CAS  Google Scholar 

  34. Chen Z, Lu M (2018) Thionine-coordinated BCN nanosheets for electrochemical enzyme immunoassay of lipocalin-2 on biofunctionalized carbon-fiber microelectrode. Sensors Actuators B Chem 273:253–259. https://doi.org/10.1016/j.snb.2018.06.053

    Article  CAS  Google Scholar 

  35. Adeel M, Rahman MM, Lee JJ (2019) Label-free aptasensor for the detection of cardiac biomarker myoglobin based on gold nanoparticles decorated boron nitride nanosheets. Biosens Bioelectron 126:143–150. https://doi.org/10.1016/j.bios.2018.10.060

    Article  CAS  PubMed  Google Scholar 

  36. Zheng J, Diao J, Jin Y, Ding A, Wang B, Wu L, Weng B, Chen J (2018) An inkjet printed Ti 3 C 2 -GO electrode for the electrochemical sensing of hydrogen peroxide. J Electrochem Soc 165:B227–B231. https://doi.org/10.1149/2.0051807jes

    Article  CAS  Google Scholar 

  37. Selvam SP, Hansa M, Yun K (2020) Simultaneous differential pulse voltammetric detection of uric acid and melatonin based on a self-assembled au nanoparticle–MoS2 nanoflake sensing platform. Sensors Actuators B Chem 307:127683. https://doi.org/10.1016/j.snb.2020.127683

    Article  CAS  Google Scholar 

  38. Chia HL, Mayorga-Martinez CC, Antonatos N, Sofer Z, Gonzalez-Julian JJ, Webster RD, Pumera M (2020) MXene titanium carbide-based biosensor: strong dependence of exfoliation method on performance. Anal Chem 92:2452–2459. https://doi.org/10.1021/acs.analchem.9b03634

    Article  CAS  PubMed  Google Scholar 

  39. Joshi N, Hayasaka T, Liu Y, Liu H, Oliveira ON Jr, Lin L (2018) A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim Acta 185:213. https://doi.org/10.1007/s00604-018-2750-5

    Article  CAS  Google Scholar 

  40. Boland C, Coleman JN, Backes C et al (2016) Guidelines for exfoliation, characterization and processing of layered materials produced by liquid exfoliation. Chem Mater 29:243–255. https://doi.org/10.1021/acs.chemmater.6b03335

    Article  CAS  Google Scholar 

  41. Shi W, Song S, Zhang H (2013) Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. Chem Soc Rev 42:5714–5743. https://doi.org/10.1039/c3cs60012b

    Article  CAS  PubMed  Google Scholar 

  42. Yang Y, Hou H, Zou G, Shi W, Shuai H, Li J, Ji X (2019) Electrochemical exfoliation of graphene-like two-dimensional nanomaterials. Nanoscale 11:16–33. https://doi.org/10.1039/c8nr08227h

    Article  CAS  Google Scholar 

  43. Antonatos N, Ghodrati H, Sofer Z (2020) Elements beyond graphene: current state and perspectives of elemental monolayer deposition by bottom-up approach. Appl Mater Today 18:100502. https://doi.org/10.1016/j.apmt.2019.100502

    Article  Google Scholar 

  44. Liu G Bin, Xiao D, Yao Y, et al (2015) Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem Soc Rev 44:2643–2663. https://doi.org/10.1039/c4cs00301b

  45. Mohamad Nasir MZ, Pumera M (2019) Emerging mono-elemental 2D nanomaterials for electrochemical sensing applications: from borophene to bismuthene. TrAC - Trends in Analytical Chemistry 121:115696. https://doi.org/10.1016/j.trac.2019.115696

    Article  CAS  Google Scholar 

  46. Kumar R, Goel N, Hojamberdiev M, Kumar M (2020) Transition metal dichalcogenides-based flexible gas sensors. Sensors Actuators A Phys 303:111875. https://doi.org/10.1016/j.sna.2020.111875

    Article  CAS  Google Scholar 

  47. Yang S, Jiang C, Wei S-H (2017) Gas sensing in 2D materials. Appl Phys Rev 4:021304. https://doi.org/10.1063/1.4983310

    Article  CAS  Google Scholar 

  48. Vilian ATE, Dinesh B, Kang SM, Krishnan UM, Huh YS, Han YK (2019) Recent advances in molybdenum disulfide-based electrode materials for electroanalytical applications. Microchim Acta 186:203. https://doi.org/10.1007/s00604-019-3287-y

    Article  CAS  Google Scholar 

  49. Chen J, Meng H, Tian Y, Yang R, du D, Li Z, Qu L, Lin Y (2019) Recent advances in functionalized MnO2 nanosheets for biosensing and biomedicine applications. Nanoscale Horizons 4:434–444. https://doi.org/10.1039/c8nh00274f

    Article  CAS  Google Scholar 

  50. Safarpour M, Arefi-Oskoui S, Khataee A (2020) A review on two-dimensional metal oxide and metal hydroxide nanosheets for modification of polymeric membranes. J Ind Eng Chem 82:31–41. https://doi.org/10.1016/j.jiec.2019.11.002

    Article  CAS  Google Scholar 

  51. Ronchi RM, Arantes JT, Santos SF (2019) Synthesis, structure, properties and applications of MXenes: current status and perspectives. Ceram Int 45:18167–18188. https://doi.org/10.1016/j.ceramint.2019.06.114

    Article  CAS  Google Scholar 

  52. Sinha A, Dhanjai ZH et al (2018) MXene: an emerging material for sensing and biosensing. TrAC - Trends in Analytical Chemistry 105:424–435. https://doi.org/10.1016/j.trac.2018.05.021

    Article  CAS  Google Scholar 

  53. Kalambate PK, Gadhari NS, Li X, Rao Z, Navale ST, Shen Y, Patil VR, Huang Y (2019) Recent advances in MXene–based electrochemical sensors and biosensors. TrAC - Trends in Analytical Chemistry 120:115643. https://doi.org/10.1016/j.trac.2019.115643

    Article  CAS  Google Scholar 

  54. Wilson JA, Yoffe AD (1969) The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys 18:193–335. https://doi.org/10.1080/00018736900101307

    Article  CAS  Google Scholar 

  55. Dolui K, Pemmaraju C Das, Sanvito S (2012) Electric field effects on armchair MoS 2 nanoribbons. ACS Nano 6:4823–4834. https://doi.org/10.1021/nn301505x

  56. Darancet P, Millis AJ, Marianetti CA (2014) Three-dimensional metallic and two-dimensional insulating behavior in octahedral tantalum dichalcogenides. Physical Review B - Condensed Matter and Materials Physics 90:2–6. https://doi.org/10.1103/PhysRevB.90.045134

    Article  CAS  Google Scholar 

  57. Ambrosi A, Sofer Z, Pumera M (2015) 2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chem Commun 51:8450–8453. https://doi.org/10.1039/c5cc00803d

    Article  CAS  Google Scholar 

  58. Rohaizad N, Mayorga-Martinez CC, Sofer Z, Webster RD, Pumera M (2020) Layered platinum dichalcogenides (PtS2, PtSe2, PtTe2) for non-enzymatic electrochemical sensor. Appl Mater Today 19:100606. https://doi.org/10.1016/j.apmt.2020.100606

    Article  Google Scholar 

  59. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti 3AlC 2. Adv Mater 23:4248–4253. https://doi.org/10.1002/adma.201102306

    Article  CAS  PubMed  Google Scholar 

  60. Kong D, Dang W, Cha JJ, Li H, Meister S, Peng H, Liu Z, Cui Y (2010) Few-layer nanoplates of Bi2Se3 and Bi 2Te3 with highly tunable chemical potential. Nano Lett 10:2245–2250. https://doi.org/10.1021/nl101260j

    Article  CAS  PubMed  Google Scholar 

  61. Wu Y, Lin Z, Tian Z, Han C, Liu J, Zhang H, Zhang Z, Wang Z, Dai L, Cao Y, Hu Z (2016) Fabrication of microstructured thermoelectric Bi2Te3 thin films by seed layer assisted electrodeposition. Mater Sci Semicond Process 46:17–22. https://doi.org/10.1016/j.mssp.2016.01.014

    Article  CAS  Google Scholar 

  62. Hong SS, Kundhikanjana W, Cha JJ, Lai K, Kong D, Meister S, Kelly MA, Shen ZX, Cui Y (2010) Ultrathin topological insulator Bi2Se3 nanoribbons exfoliated by atomic force microscopy. Nano Lett 10:3118–3122. https://doi.org/10.1021/nl101884h

    Article  CAS  PubMed  Google Scholar 

  63. Teweldebrhan D, Goyal V, Balandin AA (2010) Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals. Nano Lett 10:1209–1218. https://doi.org/10.1021/nl903590b

    Article  CAS  PubMed  Google Scholar 

  64. Marvan P, Mazánek V, Sofer Z (2019) Shear-force exfoliation of indium and gallium chalcogenides for selective gas sensing applications. Nanoscale 11:4310–4317. https://doi.org/10.1039/c8nr09294j

    Article  CAS  PubMed  Google Scholar 

  65. Chen M, Li Z, Li W, Shan C, Li W, Li K, Gu G, Feng Y, Zhong G, Wei L, Yang C (2018) Large-scale synthesis of single-crystalline self-standing SnSe2 nanoplate arrays for wearable gas sensors. Nanotechnology 29:455501. https://doi.org/10.1088/1361-6528/aade32

    Article  CAS  PubMed  Google Scholar 

  66. Büchner U (1977) Wave-vector dependence of the electron energy losses of boron nitride and graphite. Phys Status Solidi B 81:227–234. https://doi.org/10.1002/pssb.2220810124

    Article  Google Scholar 

  67. Moore EA, Smart LE (2005) Solid state chemistry. CRC Press, Taylor & Francis Group

    Google Scholar 

  68. Chen YX, Zhang WJ, Huang KJ, Zheng M, Mao YC (2017) An electrochemical microRNA sensing platform based on tungsten diselenide nanosheets and competitive RNA-RNA hybridization. Analyst 142:4843–4851. https://doi.org/10.1039/c7an01244f

    Article  CAS  PubMed  Google Scholar 

  69. Feng J, Sun X, Wu C, Peng L, Lin C, Hu S, Yang J, Xie Y (2011) Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors. J Am Chem Soc 133:17832–17838. https://doi.org/10.1021/ja207176c

    Article  CAS  PubMed  Google Scholar 

  70. Hou D, Zhou W, Liu X, Zhou K, Xie J, Li G, Chen S (2015) Pt nanoparticles / MoS2 nanosheets / carbon fibers as efficient catalyst for the hydrogen evolution reaction. Electrochim Acta 166:26–31

    Article  CAS  Google Scholar 

  71. Sha R, Vishnu N, Badhulika S (2019) MoS2 based ultra-low-cost, flexible, non-enzymatic and non-invasive electrochemical sensor for highly selective detection of uric acid in human urine samples. Sensors Actuators B Chem 279:53–60. https://doi.org/10.1016/j.snb.2018.09.106

    Article  CAS  Google Scholar 

  72. Füchtbauer HG, Tuxen AK, Moses PG, Topsøe H, Besenbacher F, Lauritsen JV (2013) Morphology and atomic-scale structure of single-layer WS2 nanoclusters. Phys Chem Chem Phys 15:15971–15980. https://doi.org/10.1039/c3cp51758f

    Article  CAS  PubMed  Google Scholar 

  73. Elías AL, Perea-López N, Castro-Beltrán A, Berkdemir A, Lv R, Feng S, Long AD, Hayashi T, Kim YA, Endo M, Gutiérrez HR, Pradhan NR, Balicas L, Mallouk TE, López-Urías F, Terrones H, Terrones M (2013) Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers. ACS Nano 7:5235–5242. https://doi.org/10.1021/nn400971k

    Article  CAS  PubMed  Google Scholar 

  74. Gutiérrez HR, Perea-López N, Elías AL, Berkdemir A, Wang B, Lv R, López-Urías F, Crespi VH, Terrones H, Terrones M (2013) Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett 13:3447–3454. https://doi.org/10.1021/nl3026357

    Article  CAS  PubMed  Google Scholar 

  75. Huang J.K, Pu J., Hsu C.L, Chiu M.H., Juang Z.Y., Chang Y.H., Chang W.H., Iwasa Y., Takenobu T. LLJ (2014) Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 8:923–930

  76. Han A, Aljarb A, Liu S, Li P, Ma C, Xue F, Lopatin S, Yang CW, Huang JK, Wan Y, Zhang X, Xiong Q, Huang KW, Tung V, Anthopoulos TD, Li LJ (2019) Growth of 2H stacked WSe2 bilayers on sapphire. Nanoscale Horizons 4:1434–1442. https://doi.org/10.1039/c9nh00260j

    Article  CAS  Google Scholar 

  77. Özküçük GU, Odacı C, Şahin E, Ay F, Perkgöz NK (2020) Glass-assisted CVD growth of large-area MoS2, WS2 and MoSe2 monolayers on Si/SiO2 substrate. Mater Sci Semicond Process 105:104679. https://doi.org/10.1016/j.mssp.2019.104679

    Article  CAS  Google Scholar 

  78. Huang CC, Al-Saab F, Wang Y et al (2014) Scalable high-mobility MoS2 thin films fabricated by an atmospheric pressure chemical vapor deposition process at ambient temperature. Nanoscale 6:12792–12797. https://doi.org/10.1039/c4nr04228j

    Article  CAS  PubMed  Google Scholar 

  79. Ji Q, Zhang Y, Gao T, Zhang Y, Ma D, Liu M, Chen Y, Qiao X, Tan PH, Kan M, Feng J, Sun Q, Liu Z (2013) Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett 13:3870–3877. https://doi.org/10.1021/nl401938t

    Article  CAS  PubMed  Google Scholar 

  80. Xu H, Han X, Li Z, Liu W, Li X, Wu J, Guo Z, Liu H (2018) Epitaxial growth of few-layer black phosphorene quantum dots on Si substrates. Adv Mater Interfaces 5:1–6. https://doi.org/10.1002/admi.201801048

    Article  CAS  Google Scholar 

  81. Aufray B, Kara A, Vizzini Ś, Oughaddou H, Léandri C, Ealet B, le Lay G (2010) Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicene. Appl Phys Lett 96:1–4. https://doi.org/10.1063/1.3419932

    Article  CAS  Google Scholar 

  82. Jang JT, Jeong S, Seo JW, Kim MC, Sim E, Oh Y, Nam S, Park B, Cheon J (2011) Ultrathin zirconium disulfide nanodiscs. J Am Chem Soc 133:7636–7639. https://doi.org/10.1021/ja200400n

    Article  CAS  PubMed  Google Scholar 

  83. Frindt RF, Yoffe AD (1963) Physical properties of layer structures: optical properties and photoconductivity of thin crystals of molybdenum disulphide. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences 273:69–83. https://doi.org/10.1098/rspa.1963.0075

    Article  Google Scholar 

  84. Liao Y, Zhang D, Wang Q, Wen T, Jia L, Zhong Z, Bai F, Tang L, Que W, Zhang H (2015) Open-top TiO2 nanotube arrays with enhanced photovoltaic and photochemical performances via a micromechanical cleavage approach. J Mater Chem A 3:14279–14283. https://doi.org/10.1039/c5ta02799c

    Article  CAS  Google Scholar 

  85. Mahesh KV, Rashada R, Kiran M, Peer Mohamed A, Ananthakumar S (2015) Shear induced micromechanical synthesis of Ti3SiC2 MAXene nanosheets for functional applications. RSC Adv 5:51242–51247. https://doi.org/10.1039/c5ra07756g

    Article  CAS  Google Scholar 

  86. Magda GZ, Petõ J, Dobrik G et al (2015) Exfoliation of large-area transition metal chalcogenide single layers. Sci Rep 5:3–7. https://doi.org/10.1038/srep14714

    Article  CAS  Google Scholar 

  87. Suryawanshi SR, More MA, Late DJ (2016) Exfoliated 2D black phosphorus nanosheets: field emission studies. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 34:041803. https://doi.org/10.1116/1.4945433

    Article  CAS  Google Scholar 

  88. Castellanos-Gomez A, Agrat N, Rubio-Bollinger G (2010) Optical identification of atomically thin dichalcogenide crystals. Appl Phys Lett 96:94–97. https://doi.org/10.1063/1.3442495

    Article  CAS  Google Scholar 

  89. Yu Y, Jiang S, Zhang G, Zhou W, Miao X, Zeng Y, Wang J, He J, Zhang L (2012) Universal ultrafast sandpaper assisting rubbing method for room temperature fabrication of two-dimensional nanosheets directly on flexible polymer substrate. Appl Phys Lett 101:073113. https://doi.org/10.1063/1.4746755

    Article  CAS  Google Scholar 

  90. Gacem K, Boukhicha M, Chen Z, Shukla A (2012) High quality 2D crystals made by anodic bonding: a general technique for layered materials. Nanotechnology 23:1–6. https://doi.org/10.1088/0957-4484/23/50/505709

    Article  CAS  Google Scholar 

  91. Moldt T, Eckmann A, Klar P, Morozov SV, Zhukov AA, Novoselov KS, Casiraghi C (2011) High-yield production and transfer of graphene flakes obtained by anodic bonding. ACS Nano 5:7700–7706. https://doi.org/10.1021/nn202293f

    Article  CAS  PubMed  Google Scholar 

  92. Shen Z, Li J, Yi M, Zhang X, Ma S (2011) Preparation of graphene by jet cavitation. Nanotechnology 22:365306. https://doi.org/10.1088/0957-4484/22/36/365306

    Article  CAS  PubMed  Google Scholar 

  93. Lohse D (2005) Sonoluminescence: cavitation hots up. Nature 434:33–34. https://doi.org/10.1038/434033a

    Article  CAS  PubMed  Google Scholar 

  94. Štengl V, Henych J (2013) Strongly luminescent monolayered MoS2 prepared by effective ultrasound exfoliation. Nanoscale 5:3387–3394. https://doi.org/10.1039/c3nr00192j

    Article  CAS  PubMed  Google Scholar 

  95. May P, Khan U, Hughes JM, Coleman JN (2012) Role of solubility parameters in understanding the steric stabilization of exfoliated two-dimensional nanosheets by adsorbed polymers. J Phys Chem C 116:11393–11400. https://doi.org/10.1021/jp302365w

    Article  CAS  Google Scholar 

  96. Hughes JM, Aherne D, Coleman JN (2013) Generalizing solubility parameter theory to apply to one- and two-dimensional solutes and to incorporate dipolar interactions. J Appl Polym Sci 127:4483–4491. https://doi.org/10.1002/app.38051

    Article  CAS  Google Scholar 

  97. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, de S, McGovern IT, Holland B, Byrne M, Gun'Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568. https://doi.org/10.1038/nnano.2008.215

    Article  CAS  PubMed  Google Scholar 

  98. Kang J, Wells SA, Wood JD, Lee JH, Liu X, Ryder CR, Zhu J, Guest JR, Husko CA, Hersam MC (2016) Stable aqueous dispersions of optically and electronically active phosphorene. Proc Natl Acad Sci U S A 113:11688–11693. https://doi.org/10.1073/pnas.1602215113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Guan Z, Wang C, Li W, et al (2018) A facile and clean process for exfoliating MoS2 nanosheets assisted by a surface active agent in aqueous solution. Nanotechnology 29:. https://doi.org/10.1088/1361-6528/aad676

  100. Gusmão R, Sofer Z, Bouša D, Pumera M (2017) Pnictogen (As, Sb, Bi) nanosheets for electrochemical applications are produced by shear exfoliation using kitchen blenders. Angewandte Chemie - International Edition 56:14417–14422. https://doi.org/10.1002/anie.201706389

    Article  CAS  PubMed  Google Scholar 

  101. Griffin A, Nisi K, Pepper J, Harvey A, Szydłowska BM, Coleman JN, Backes C (2020) Effect of surfactant choice and concentration on the dimensions and yield of liquid-phase-exfoliated Nanosheets. Chem Mater 32:2852–2862. https://doi.org/10.1021/acs.chemmater.9b04684

    Article  CAS  Google Scholar 

  102. Chen X, Dobson JF, Raston CL (2012) Vortex fluidic exfoliation of graphite and boron nitride. Chem Commun 48:3703–3705. https://doi.org/10.1039/c2cc17611d

    Article  CAS  Google Scholar 

  103. Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A, Boland C, Lotya M, Istrate OM, King P, Higgins T, Barwich S, May P, Puczkarski P, Ahmed I, Moebius M, Pettersson H, Long E, Coelho J, O’Brien SE, McGuire EK, Sanchez BM, Duesberg GS, McEvoy N, Pennycook TJ, Downing C, Crossley A, Nicolosi V, Coleman JN (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13:624–630. https://doi.org/10.1038/nmat3944

    Article  CAS  PubMed  Google Scholar 

  104. Varrla E, Backes C, Paton KR, Harvey A, Gholamvand Z, McCauley J, Coleman JN (2015) Large-scale production of size-controlled MoS2 nanosheets by shear exfoliation. Chem Mater 27:1129–1139. https://doi.org/10.1021/cm5044864

    Article  CAS  Google Scholar 

  105. Mayorga-Martinez CC, Gusmão R, Sofer Z, Pumera M (2019) Pnictogen-based enzymatic phenol biosensors: phosphorene, arsenene, antimonene, and bismuthene. Angewandte Chemie - International Edition 58:134–138. https://doi.org/10.1002/anie.201808846

    Article  CAS  PubMed  Google Scholar 

  106. Mähler J, Persson I (2012) A study of the hydration of the alkali metal ions in aqueous solution. Inorg Chem 51:425–438. https://doi.org/10.1021/ic2018693

    Article  CAS  PubMed  Google Scholar 

  107. Ding Z, Viculis L, Nakawatase J, Kaner RB (2001) Intercalation and solution processing of bismuth telluride and bismuth selenide. Adv Mater 13:797–800. https://doi.org/10.1002/1521-4095(200106)13:11<797::AID-ADMA797>3.0.CO;2-U

    Article  CAS  Google Scholar 

  108. Ren L, Qi X, Liu Y, Hao G, Huang Z, Zou X, Yang L, Li J, Zhong J (2012) Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route. J Mater Chem 22:4921–4926. https://doi.org/10.1039/c2jm15973b

    Article  CAS  Google Scholar 

  109. Zhu J, Wang H, Liu J, Ouyang L, Zhu M (2017) Exfoliation of MoS2 and h-BN nanosheets by hydrolysis of LiBH4. Nanotechnology 28:115604. https://doi.org/10.1088/1361-6528/aa5964

    Article  CAS  PubMed  Google Scholar 

  110. Joensen P, Frindt RF, Morrison SR (1986) Single-layer MoS2. Mater Res Bull 21:457–461. https://doi.org/10.1016/0025-5408(86)90011-5

    Article  CAS  Google Scholar 

  111. Loo AH, Bonanni A, Sofer Z, Pumera M (2015) Exfoliated transition metal dichalcogenides (MoS2, MoSe2, WS2, WSe2): an electrochemical impedance spectroscopic investigation. Electrochem Commun 50:39–42. https://doi.org/10.1016/j.elecom.2014.10.018

    Article  CAS  Google Scholar 

  112. Dines MB (1975) Lithium intercalation via n-Butyllithium of the layered transition metal dichalcogenides. Mater Res Bull 10:287–291. https://doi.org/10.1016/0025-5408(75)90115-4

    Article  CAS  Google Scholar 

  113. Zeng Z, Sun T, Zhu J, Huang X, Yin Z, Lu G, Fan Z, Yan Q, Hng HH, Zhang H (2012) An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angewandte Chemie - International Edition 51:9052–9056. https://doi.org/10.1002/anie.201204208

    Article  CAS  PubMed  Google Scholar 

  114. Zeng Z, Yin Z, Huang X, Li H, He Q, Lu G, Boey F, Zhang H (2011) Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angewandte Chemie - International Edition 50:11093–11097. https://doi.org/10.1002/anie.201106004

    Article  CAS  PubMed  Google Scholar 

  115. Yang QQ, Liu RT, Huang C, Huang YF, Gao LF, Sun B, Huang ZP, Zhang L, Hu CX, Zhang ZQ, Sun CL, Wang Q, Tang YL, Zhang HL (2018) 2D bismuthene fabricated: via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers. Nanoscale 10:21106–21115. https://doi.org/10.1039/c8nr06797j

    Article  CAS  PubMed  Google Scholar 

  116. Liu N, Kim P, Kim JH, Ye JH, Kim S, Lee CJ (2014) Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation. ACS Nano 8:6902–6910. https://doi.org/10.1021/nn5016242

    Article  CAS  PubMed  Google Scholar 

  117. Li F, Xue M, Zhang X, Chen L, Knowles GP, MacFarlane DR, Zhang J (2018) Advanced composite 2D energy materials by simultaneous anodic and cathodic exfoliation. Adv Energy Mater 8:1–8. https://doi.org/10.1002/aenm.201702794

    Article  CAS  Google Scholar 

  118. Yang S, Zhang K, Ricciardulli AG, Zhang P, Liao Z, Lohe MR, Zschech E, Blom PWM, Pisula W, Müllen K, Feng X (2018) A delamination strategy for thinly layered defect-free high-mobility black phosphorus flakes. Angewandte Chemie - International Edition 57:4677–4681. https://doi.org/10.1002/anie.201801265

    Article  CAS  PubMed  Google Scholar 

  119. Xiao H, Zhao M, Zhang J, Ma X, Zhang J, Hu T, Tang T, Jia J, Wu H (2018) Electrochemical cathode exfoliation of bulky black phosphorus into few-layer phosphorene nanosheets. Electrochem Commun 89:10–13. https://doi.org/10.1016/j.elecom.2018.02.010

    Article  CAS  Google Scholar 

  120. Li F, Xue M, Li J, Ma X, Chen L, Zhang X, MacFarlane DR, Zhang J (2017) Unlocking the electrocatalytic activity of antimony for CO2 reduction by two-dimensional engineering of the bulk material. Angewandte Chemie - International Edition 56:14718–14722. https://doi.org/10.1002/anie.201710038

    Article  CAS  PubMed  Google Scholar 

  121. Lu L, Tang X, Cao R, Wu L, Li Z, Jing G, Dong B, Lu S, Li Y, Xiang Y, Li J, Fan D, Zhang H (2017) Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability. Advanced Optical Materials 5:1–9. https://doi.org/10.1002/adom.201700301

    Article  CAS  Google Scholar 

  122. Lin Z, Liu Y, Halim U, Ding M, Liu Y, Wang Y, Jia C, Chen P, Duan X, Wang C, Song F, Li M, Wan C, Huang Y, Duan X (2018) Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562:254–258. https://doi.org/10.1038/s41586-018-0574-4

    Article  CAS  PubMed  Google Scholar 

  123. Yang S, Zhang P, Wang F, Ricciardulli AG, Lohe MR, Blom PWM, Feng X (2018) Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew Chem 130:15717–15721. https://doi.org/10.1002/ange.201809662

    Article  Google Scholar 

  124. Ma L, Zhang Q, Wu C, Zhang Y, Zeng L (2019) PtNi bimetallic nanoparticles loaded MoS 2 nanosheets: preparation and electrochemical sensing application for the detection of dopamine and uric acid. Anal Chim Acta 1055:17–25. https://doi.org/10.1016/j.aca.2018.12.025

    Article  CAS  PubMed  Google Scholar 

  125. Zhu L, Zhang Y, Xu P, Wen W, Li X, Xu J (2016) PtW/MoS2 hybrid nanocomposite for electrochemical sensing of H2O2 released from living cells. Biosens Bioelectron 80:601–606. https://doi.org/10.1016/j.bios.2016.02.019

    Article  CAS  PubMed  Google Scholar 

  126. Gan X, Zhao H, Quan X, Zhang Y (2016) An electrochemical sensor based on p-aminothiophenol/Au nanoparticle-decorated HxTiS2 Nanosheets for specific detection of Picomolar Cu (II). Electrochim Acta 190:480–489. https://doi.org/10.1016/j.electacta.2015.12.145

    Article  CAS  Google Scholar 

  127. Cui S, Wen Z, Huang X, Chang J, Chen J (2015) Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air. Small 11:2305–2313. https://doi.org/10.1002/smll.201402923

    Article  CAS  PubMed  Google Scholar 

  128. Xu K, Tang Q, Zhao W, Yu X, Yang Y, Yu T, Yuan C (2020) In situ growth of Co3O4@NiMoO4 composite arrays on alumina substrate with improved triethylamine sensing performance. Sensors Actuators B Chem 302:127154. https://doi.org/10.1016/j.snb.2019.127154

    Article  CAS  Google Scholar 

  129. Xu H, Ju J, Li W, Zhang J, Wang J, Cao B (2016) Superior triethylamine-sensing properties based on TiO2/SnO2 n-n heterojunction nanosheets directly grown on ceramic tubes. Sensors Actuators B Chem 228:634–642. https://doi.org/10.1016/j.snb.2016.01.059

    Article  CAS  Google Scholar 

  130. Rasheed PA, Pandey RP, Rasool K, Mahmoud KA (2018) Ultra-sensitive electrocatalytic detection of bromate in drinking water based on Nafion/Ti3C2Tx (MXene) modified glassy carbon electrode. Sensors Actuators B Chem 265:652–659. https://doi.org/10.1016/j.snb.2018.03.103

    Article  CAS  Google Scholar 

  131. Elumalai S, Mani V, Jeromiyas N, Ponnusamy VK, Yoshimura M (2020) A composite film prepared from titanium carbide Ti3C2Tx (MXene) and gold nanoparticles for voltammetric determination of uric acid and folic acid. Microchim Acta 187:33. https://doi.org/10.1007/s00604-019-4018-0

    Article  CAS  Google Scholar 

  132. Shankar SS, Shereema RM, Rakhi RB (2018) Electrochemical determination of adrenaline using MXene/graphite composite paste electrodes. ACS Appl Mater Interfaces 10:43343–43351. https://doi.org/10.1021/acsami.8b11741

    Article  CAS  PubMed  Google Scholar 

  133. Tai H, Duan Z, He Z, Li X, Xu J, Liu B, Jiang Y (2019) Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanoparticles at room temperature. Sensors Actuators B Chem 298:126874. https://doi.org/10.1016/j.snb.2019.126874

    Article  CAS  Google Scholar 

  134. Cui S, Pu H, Wells SA, Wen Z, Mao S, Chang J, Hersam MC, Chen J (2015) Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nat Commun 6:8632. https://doi.org/10.1038/ncomms9632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Niu X, Weng W, Yin C, Niu Y, Li G, Dong R, Men Y, Sun W (2018) Black phosphorene modified glassy carbon electrode for the sensitive voltammetric detection of rutin. J Electroanal Chem 811:78–83. https://doi.org/10.1016/j.jelechem.2018.01.038

    Article  CAS  Google Scholar 

  136. Li X, Luo G, Xie H, Niu Y, Li X, Zou R, Xi Y, Xiong Y, Sun W, Li G (2019) Voltammetric sensing performances of a carbon ionic liquid electrode modified with black phosphorene and hemin. Microchim Acta 186:304. https://doi.org/10.1007/s00604-019-3421-x

    Article  CAS  Google Scholar 

  137. Ramalingam S, Chand R, Singh CB, Singh A (2019) Phosphorene-gold nanocomposite based microfluidic aptasensor for the detection of okadaic acid. Biosens Bioelectron 135:14–21. https://doi.org/10.1016/j.bios.2019.03.056

    Article  CAS  PubMed  Google Scholar 

  138. Pawar M, Kadam S, Late DJ (2017) High-performance sensing behavior using electronic ink of 2D SnSe2 nanosheets. ChemistrySelect 2:4068–4075. https://doi.org/10.1002/slct.201700261

    Article  CAS  Google Scholar 

  139. Wang S, Zhang S, Liu M, Song H, Gao J, Qian Y (2018) MoS2 as connector inspired high electrocatalytic performance of NiCo2O4 nanoplates towards glucose. Sensors Actuators B Chem 254:1101–1109. https://doi.org/10.1016/j.snb.2017.08.011

    Article  CAS  Google Scholar 

  140. Shuai HL, Huang KJ, Chen YX (2016) A layered tungsten disulfide/acetylene black composite based DNA biosensing platform coupled with hybridization chain reaction for signal amplification. J Mater Chem B 4:1186–1196. https://doi.org/10.1039/c5tb02214b

    Article  CAS  PubMed  Google Scholar 

  141. Li A, Jian Z, Jichuan Q, Zhenhuan Z, Wang C, Zhao Chunjiang LH (2017) A novel aptameric biosensor based on the self-assembled DNA–WS2 nanosheet architecture. Talanta 163:78–84

    Article  CAS  Google Scholar 

  142. Zhu C, Zeng Z, Li H, Li F, Fan C, Zhang H (2013) Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J Am Chem Soc 135:5998–6001. https://doi.org/10.1021/ja4019572

    Article  CAS  PubMed  Google Scholar 

  143. Toh RJ, Mayorga-Martinez CC, Han J, Sofer Z, Pumera M (2017) Group 6 layered transition-metal dichalcogenides in lab-on-a-chip devices: 1T-phase WS2 for microfluidics non-enzymatic detection of hydrogen peroxide. Anal Chem 89:4978–4985. https://doi.org/10.1021/acs.analchem.7b00302

    Article  CAS  PubMed  Google Scholar 

  144. Guo GY, Liang WY (1986) The electronic structures of platinum dichalcogenides: PtS2, PtSe2 and PtTe2. J Phys C Solid State Phys 19:995–1008. https://doi.org/10.1088/0022-3719/19/7/011

    Article  CAS  Google Scholar 

  145. Li H, Yin Z, He Q, Li H, Huang X, Lu G, Fam DWH, Tok AIY, Zhang Q, Zhang H (2012) Fabrication of single- and multilayer MoS 2 film-based field-effect transistors for sensing NO at room temperature. Small 8:63–67. https://doi.org/10.1002/smll.201101016

    Article  CAS  PubMed  Google Scholar 

  146. Cho B, Hahm MG, Choi M, Yoon J, Kim AR, Lee YJ, Park SG, Kwon JD, Kim CS, Song M, Jeong Y, Nam KS, Lee S, Yoo TJ, Kang CG, Lee BH, Ko HC, Ajayan PM, Kim DH (2015) Charge-transfer-based gas sensing using atomic-layer MoS2. Sci Rep 5:8052. https://doi.org/10.1038/srep08052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Han TL, Wan YT, Li JJ, Zhang HG, Liu JH, Huang XJ, Liu JY (2017) In situ gold nanoparticle-decorated three-dimensional tin dioxide nanostructures for sensitive and selective gas-sensing detection of volatile organic compounds. J Mater Chem C 5:6193–6201. https://doi.org/10.1039/c7tc01496a

    Article  CAS  Google Scholar 

  148. Chen WY, Yen CC, Xue S, Wang H, Stanciu LA (2019) Surface functionalization of layered molybdenum disulfide for the selective detection of volatile organic compounds at room temperature. ACS Appl Mater Interfaces 11:34135–34143. https://doi.org/10.1021/acsami.9b13827

    Article  CAS  PubMed  Google Scholar 

  149. Guo S, Yang D, Zhang S, Dong Q, Li B, Tran N, Li Z, Xiong Y, Zaghloul ME (2019) Development of a cloud-based epidermal MoSe 2 device for hazardous gas sensing. Adv Funct Mater 29:1–10. https://doi.org/10.1002/adfm.201900138

    Article  CAS  Google Scholar 

  150. Guo S, Yang D, Zhang S, Dong Q, Li B, Tran N, Li Z, Xiong Y, Zaghloul ME (2019) Development of a cloud-based epidermal MoSe 2 device for hazardous gas sensing. Adv Funct Mater 29:1900138. https://doi.org/10.1002/adfm.201900138

    Article  CAS  Google Scholar 

  151. Guo H, Lan C, Zhou Z, Sun P, Wei D, Li C (2017) Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale 9:6246–6253. https://doi.org/10.1039/c7nr01016h

    Article  CAS  PubMed  Google Scholar 

  152. Hao L, Liu H, Xu H, Dong S, du Y, Wu Y, Zeng H, Zhu J, Liu Y (2019) Flexible Pd-WS2/Si heterojunction sensors for highly sensitive detection of hydrogen at room temperature. Sensors Actuators B Chem 283:740–748. https://doi.org/10.1016/j.snb.2018.12.062

    Article  CAS  Google Scholar 

  153. Shu Y, Xu J, Chen J, Xu Q, Xiao X, Jin D, Pang H, Hu X (2017) Ultrasensitive electrochemical detection of H2O2 in living cells based on ultrathin MnO2 nanosheets. Sensors Actuators B Chem 252:72–78. https://doi.org/10.1016/j.snb.2017.05.124

    Article  CAS  Google Scholar 

  154. Zhang S, Zhuang X, Chen D, Luan F, He T, Tian C, Chen L (2019) Simultaneous voltammetric determination of guanine and adenine using MnO2 nanosheets and ionic liquid-functionalized graphene combined with a permeation-selective polydopamine membrane. Microchim Acta 186:450. https://doi.org/10.1007/s00604-019-3577-4

    Article  CAS  Google Scholar 

  155. Yang T, Tian L, Zhou E, He G, Chen D, Xie J (2019) Design of Ni(OH)2 nanocages@MnO2 nanosheets core-shell architecture to jointly facilitate electrocatalytic dynamic for highly sensitive detection of dopamine. Biosens Bioelectron 143:111634. https://doi.org/10.1016/j.bios.2019.111634

    Article  CAS  PubMed  Google Scholar 

  156. Mahmoudian MR, Basirun WJ, Woi PM, Sookhakian M, Yousefi R, Ghadimi H, Alias Y (2016) Synthesis and characterization of Co3O4 ultra-nanosheets and Co3O4 ultra-nanosheet-Ni(OH)2 as non-enzymatic electrochemical sensors for glucose detection. Mater Sci Eng C 59:500–508. https://doi.org/10.1016/j.msec.2015.10.055

    Article  CAS  Google Scholar 

  157. Vabbina PK, Kaushik A, Pokhrel N, Bhansali S, Pala N (2015) Electrochemical cortisol immunosensors based on sonochemically synthesized zinc oxide 1D nanorods and 2D nanoflakes. Biosens Bioelectron 63:124–130. https://doi.org/10.1016/j.bios.2014.07.026

    Article  CAS  PubMed  Google Scholar 

  158. Gong M, Li Y, Guo Y, Lv X, Dou X (2018) 2D TiO2 nanosheets for ultrasensitive humidity sensing application benefited by abundant surface oxygen vacancy defects. Sensors Actuators B Chem 262:350–358. https://doi.org/10.1016/j.snb.2018.01.187

    Article  CAS  Google Scholar 

  159. Tian X, Yang L, Qing X, Yu K, Wang X (2015) Trace level detection of hydrogen gas using birnessite-type manganese oxide. Sensors Actuators B Chem 207:34–42. https://doi.org/10.1016/j.snb.2014.08.018

    Article  CAS  Google Scholar 

  160. Hu J, Liang Y, Sun Y, Zhao Z, Zhang M, Li P, Zhang W, Chen Y, Zhuiykov S (2017) Highly sensitive NO2 detection on ppb level by devices based on Pd-loaded In2O3 hierarchical microstructures. Sensors Actuators B Chem 252:116–126. https://doi.org/10.1016/j.snb.2017.05.113

    Article  CAS  Google Scholar 

  161. Lorencova L, Bertok T, Filip J, Jerigova M, Velic D, Kasak P, Mahmoud KA, Tkac J (2018) Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications. Sensors Actuators B Chem 263:360–368. https://doi.org/10.1016/j.snb.2018.02.124

    Article  CAS  Google Scholar 

  162. Liu J, Jiang X, Zhang R, Zhang Y, Wu L, Lu W, Li J, Li Y, Zhang H (2019) MXene-enabled electrochemical microfluidic biosensor: applications toward multicomponent continuous monitoring in whole blood. Adv Funct Mater 29:1807326. https://doi.org/10.1002/adfm.201807326

    Article  CAS  Google Scholar 

  163. Wang H, Sun J, Lu L, Yang X, Xia J, Zhang F, Wang Z (2020) Competitive electrochemical aptasensor based on a cDNA-ferrocene/MXene probe for detection of breast cancer marker Mucin1. Anal Chim Acta 1094:18–25. https://doi.org/10.1016/j.aca.2019.10.003

    Article  CAS  PubMed  Google Scholar 

  164. Duan F, Guo C, Hu M, Song Y, Wang M, He L, Zhang Z, Pettinari R, Zhou L (2020) Construction of the 0D/2D heterojunction of Ti3C2Tx MXene nanosheets and iron phthalocyanine quantum dots for the impedimetric aptasensing of microRNA-155. Sensors Actuators B Chem 310:127844. https://doi.org/10.1016/j.snb.2020.127844

    Article  CAS  Google Scholar 

  165. Lei Y, Zhao W, Zhang Y, Jiang Q, He JH, Baeumner AJ, Wolfbeis OS, Wang ZL, Salama KN, Alshareef HN (2019) A MXene-based wearable biosensor system for high-performance in vitro perspiration analysis. Small 15:1901190. https://doi.org/10.1002/smll.201901190

    Article  CAS  Google Scholar 

  166. Koyappayil A, Chavan SG, Mohammadniaei M, et al (2020) β-Hydroxybutyrate dehydrogenase decorated MXene nanosheets for the amperometric determination of β-hydroxybutyrate. Microchimica Acta 187:277. https://doi.org/10.1007/s00604-020-04258-y

  167. Lee E, Vahidmohammadi A, Prorok BC et al (2017) Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl Mater Interfaces 9:37184–37190. https://doi.org/10.1021/acsami.7b11055

    Article  CAS  PubMed  Google Scholar 

  168. Kim SJ, Koh HJ, Ren CE, Kwon O, Maleski K, Cho SY, Anasori B, Kim CK, Choi YK, Kim J, Gogotsi Y, Jung HT (2018) Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12:986–993. https://doi.org/10.1021/acsnano.7b07460

    Article  CAS  PubMed  Google Scholar 

  169. Lee E, Vahidmohammadi A, Yoon YS et al (2019) Two-dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward nonpolar gases. ACS Sensors 4:1603–1611. https://doi.org/10.1021/acssensors.9b00303

    Article  CAS  Google Scholar 

  170. Mayorga-Martinez CC, Sofer Z, Pumera M (2015) Layered black phosphorus as a selective vapor sensor. Angewandte Chemie - International Edition 54:14317–14320. https://doi.org/10.1002/anie.201505015

    Article  CAS  PubMed  Google Scholar 

  171. García-Mendiola T, Gutiérrez-Sánchez C, Gibaja C, Torres I, Busó-Rogero C, Pariente F, Solera J, Razavifar Z, Palacios JJ, Zamora F, Lorenzo E (2020) Functionalization of a few-layer antimonene with oligonucleotides for DNA sensing. ACS Applied Nano Materials 3:3625–3633. https://doi.org/10.1021/acsanm.0c00335

    Article  CAS  Google Scholar 

  172. Beladi-Mousavi SM, Pourrahimi AM, Sofer Z, Pumera M (2019) Atomically thin 2D-arsenene by liquid-phased exfoliation: toward selective vapor sensing. Adv Funct Mater 29:1–7. https://doi.org/10.1002/adfm.201807004

    Article  CAS  Google Scholar 

  173. Khan AF, Brownson DAC, Randviir EP, Smith GC, Banks CE (2016) 2D hexagonal boron nitride (2D-hBN) explored for the electrochemical sensing of dopamine. Anal Chem 88:9729–9737. https://doi.org/10.1021/acs.analchem.6b02638

    Article  CAS  PubMed  Google Scholar 

  174. Fu L, Liu Z, Huang Y, Lai G, Zhang H, Su W, Yu J, Wang A, Lin CT, Yu A (2018) Square wave voltammetric quantitative determination of flavonoid luteolin in peanut hulls and Perilla based on Au NPs loaded boron nitride nanosheets. J Electroanal Chem 817:128–133. https://doi.org/10.1016/j.jelechem.2018.04.009

    Article  CAS  Google Scholar 

  175. Zhang L, Liu C, Wang Q, Wang X, Wang S (2020) Electrochemical sensor based on an electrode modified with porous graphitic carbon nitride nanosheets (C3N4) embedded in graphene oxide for simultaneous determination of ascorbic acid, dopamine and uric acid. Microchim Acta 187:149. https://doi.org/10.1007/s00604-019-4081-6

    Article  CAS  Google Scholar 

  176. Ramalingam M, Ponnusamy VK, Sangilimuthu SN (2019) A nanocomposite consisting of porous graphitic carbon nitride nanosheets and oxidized multiwalled carbon nanotubes for simultaneous stripping voltammetric determination of cadmium(II), mercury(II), lead(II) and zinc(II). Microchim Acta 186:69. https://doi.org/10.1007/s00604-018-3178-7

    Article  CAS  Google Scholar 

  177. He Y, Li D, Gao W, Yin H, Chen F, Sun Y (2019) High-performance NO2 sensors based on spontaneously functionalized hexagonal boron nitride nanosheets: via chemical exfoliation. Nanoscale 11:21909–21916. https://doi.org/10.1039/c9nr07153a

    Article  CAS  PubMed  Google Scholar 

  178. Liu Y, Gao P, Zhang T, Zhu X, Zhang M, Chen M, du P, Wang GW, Ji H, Yang J, Yang S (2019) Azide passivation of black phosphorus nanosheets: covalent functionalization affords ambient stability enhancement. Angewandte Chemie - International Edition 58:1479–1483. https://doi.org/10.1002/anie.201813218

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamas I. Prodromidis.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazanas, A.C., Prodromidis, M.I. Two-dimensional inorganic nanosheets: production and utility in the development of novel electrochemical (bio)sensors and gas-sensing applications. Microchim Acta 188, 6 (2021). https://doi.org/10.1007/s00604-020-04674-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04674-0

Keywords

Navigation