Skip to main content
Log in

Nitrogen, sulfur, phosphorus, and chlorine co-doped carbon nanodots as an “off-on” fluorescent probe for sequential detection of curcumin and europium ion and luxuriant applications

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Nitrogen, sulfur, phosphorus, and chlorine co-doped carbon nanodots (NSPCl-CNDs) were fabricated by acid-base neutralization and exothermic carbonization of glucose. The obtained NSPCl-CNDs possess excellent fluorescence properties and good biocompatibility. Curcumin (Cur) can dramatically quench the fluorescence of NSPCl-CNDs based on a synergistic effect of electrostatic interaction, inner filter effect, and static quenching, so a “turn-off” fluorescent probe for Cur detection was constructed with linear ranges of 0.24–13.16 μM and 13.62–57.79 μM. The LOD and LOQ of this fluorescent probe for Cur are 8.71 nM and 29.03 nM, respectively. More importantly, the fluorescence of the NSPCl-CNDs-Cur system can be recovered by europium ion (Eu3+), so a “turn-on” fluorescent probe for Eu3+ determination was established. The linear range, LOD, and LOQ for the detection of Eu3+ were 2.36–32.91 μΜ, 73.29 nM, and 244.30 nM, respectively. The proposed fluorescence methods were successfully utilized for Cur and Eu3+ determination in real samples with recoveries in the range 95.64–104.13% and 97.06–98.70%, respectively. Furthermore, the qualitative analysis of Cur can be realized by reagent strips with satisfying results. Finally, the as-constructed “off-on” fluorescent probe was successfully used to sequentially analyze Cur and Eu3+ at the cellular level. This method is simple and easy to implement, manifesting that NSPCl-CNDs have potential application value in fluorescent probing, food and drug testing, environmental monitoring, and cellular labeling.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Prasad S, Tyagi AK, Aggarwal BB (2014) Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat 46:2–18

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Esatbeyoglu T, Huebbe P, Ernst IMA, Chin D, Wagner AE, Rimbach G (2012) Curcumin-from molecule to biological function. Angew Chem Int Ed 51:5308–5332

    CAS  Google Scholar 

  3. Chan W-H, Wu H-Y, Chang WH (2006) Dosage effects of curcumin on cell death types in a human osteoblast cell line. Food Chem Toxicol 44:1362–1371

    CAS  PubMed  Google Scholar 

  4. Esther P-P, Soriano ML, Gema MD, Eulogio JL-M, Ana MC, Ángel R (2020) Discrimination between nanocurcumin and free curcumin using graphene quantum dots as a selective fluorescence probe. Microchim Acta 187:446

    Google Scholar 

  5. Bu L, Luo T, Peng H, Li L, Long D, Peng J, Huang J (2019) One-step synthesis of N-doped carbon dots, and their applications in curcumin sensing, fluorescent inks, and super-resolution nanoscopy. Microchim Acta 186:675

    CAS  Google Scholar 

  6. Zhao M, Qi W, Fu Y, He H, Wu D, Qi L, Li R (2019) Electrochemiluminescence “turn-off” detection of curcumin via energy transfer using luminol-doped silica nanoparticles. Microchim Acta 186:409

    Google Scholar 

  7. Liu L, Hua R, Zhang X, Li X, Zhang W, Qi X, Zhang T, Yang S, Zhang H, Liang H (2020) Spectral identification and detection of curcumin based on lanthanide upconversion nanoparticles. Appl Surf Sci 525:146566

    CAS  Google Scholar 

  8. Yang H, Li X, Wang X, Chen W, Bian W, Choi MMF (2018) Silver-doped graphite carbon nitride nanosheets as fluorescent probe for the detection of curcumin. Luminescence 33:1062–1069

    CAS  PubMed  Google Scholar 

  9. Yang R, Mu W-Y, Chen Q-Y (2019) Urazole-Au nanocluster as a novel fluorescence probe for curcumin determination and mitochondria imaging. Food Anal Methods 12:1805–1812

    Google Scholar 

  10. Yu M, Lin J, Fang J (2005) Silica spheres coated with YVO4:Eu3+ layers via sol−gel process: a simple method to obtain spherical core−shell phosphors. Chem Mater 17:1783–1791

    CAS  Google Scholar 

  11. Lehmann O, Kömpe K, Haase M (2004) Synthesis of Eu3+-doped core and core/shell nanoparticles and direct spectroscopic identification of dopant sites at the surface and in the interior of the particles. J Am Chem Soc 126:14935–14942

    CAS  PubMed  Google Scholar 

  12. González V, Vignati DAL, Leyval C, Giamberini L (2014) Environmental fate and ecotoxicity of lanthanides: are they a uniform group beyond chemistry? Environ Int 71:148–157

    PubMed  Google Scholar 

  13. Li C, Zhuang Z, Huang F, Wu Z, Hong Y, Lin Z (2013) Recycling rare earth elements from industrial wastewater with flowerlike nano-Mg(OH)2. ACS Appl Mater Interfaces 5:9719–9725

    CAS  PubMed  Google Scholar 

  14. Bruzzoniti MC, Mentasti E, Sarzanini C, Braglia M, Cocito G, Kraus J (1996) Determination of rare earth elements by ion chromatography. Separation procedure optimization. Anal Chim Acta 322:49–54

    CAS  Google Scholar 

  15. Verplanck PL, Antweiler RC, Nordstrom DK, Taylor HE (2001) Standard reference water samples for rare earth element determination. Appl Geochem 16:231–244

    CAS  Google Scholar 

  16. Itoh H, Hachiya H, Tsuchiya M, Suzuki Y, Asano Y (1984) Determination of solubility products of rare earth fluorides by fluoride ion-selective electrode. Bull Chem Soc Jpn 57:1689–1690

    CAS  Google Scholar 

  17. Pasinli T, Eroglu AE, Shahwan T (2005) Preconcentration and atomic spectrometric determination of rare earth elements (REEs) in natural water samples by inductively coupled plasma atomic emission spectrometry. Anal Chim Acta 547:42–49

    CAS  Google Scholar 

  18. Siriraks A, Kingston HM, Riviello JM (1990) Chelation ion chromatography as a method for trace elemental analysis in complex environmental and biological samples. Anal Chem 62:1185–1193

    CAS  PubMed  Google Scholar 

  19. Crozaz G, Zinner E (1985) Ion probe determinations of the rare earth concentrations of individual meteoritic phosphate grains. Earth Planet Sci Lett 73:41–52

    CAS  Google Scholar 

  20. Ma X, Xu Z, Yuan H, He Y, Xiao D, Choi MMF (2010) High-sensitive and selective Eu3+ electrochemical sensor based on LaB6 electrode and sodium dodecylbenzene sulfonate. Sens Actuators B-Chem 147:152–158

    CAS  Google Scholar 

  21. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Elec-trophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737

    CAS  PubMed  Google Scholar 

  22. Kang Z, Lee S-T (2019) Carbon dots: advances in nanocarbon applications. Nanoscale 11:19214–19224

    CAS  PubMed  Google Scholar 

  23. Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2:6921–6939

    CAS  Google Scholar 

  24. Cui X, Zhu L, Wu J, Hou Y, Wang P, Wang Z, Yang M (2014) A fluorescent biosensor based on carbon dots-labeled oligodeoxyribonucleotide and graphene oxide for mercury (II) detection. Biosens Bioelectron 63:506–512

    PubMed  Google Scholar 

  25. Sahu S, Behera B, Maiti TK, Mohapatra S (2012) Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun 48:8835–8837

    CAS  Google Scholar 

  26. Hola K, Zhang Y, Wang Y, Giannelis EP, Zboril R, Rogach AL (2014) Carbon dots-emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 9:590–603

    CAS  Google Scholar 

  27. Hettiarac S, Graham R, Mintz KJ, Zhou Y, Vanni S, Peng Z, Leblanc RM (2019) Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors. Nanoscale 11:6192–6205

    Google Scholar 

  28. Xu Y, Wu M, Liu Y, Feng X-Z, Yin X-B, He X-W, Zhang Y-K (2013) Nitrogen-doped carbon dots: a facile and general preparation method, photoluminescence investigation, and imaging applications. Chemistry 19:2276–2283

    CAS  PubMed  Google Scholar 

  29. Wang Z-X, Yu X-H, Li F, Kong F-Y, Lv W-X, Fan D-H, Wang W (2017) Preparation of boron-doped carbon dots for fluorometric determination of Pb(II), Cu(II) and pyrophosphate ions. Microchim Acta 184:4775–4783

    CAS  Google Scholar 

  30. Qian Z, Shan X, Chai L, Ma J, Chen J, Feng H (2014) Si-doped carbon quantum dots: a facile and general preparation strategy, bioimaging application, and multifunctional sensor. ACS Appl Mater Interfaces 6:6797–6805

    CAS  PubMed  Google Scholar 

  31. Zou S, Hou C, Fa H, Zhang L, Ma Y, Dong L, Li D, Huo D, Yang M (2017) An efficient fluorescent probe for fluazinam using N, S co-doped carbon dots from L-cysteine. Sens Actuators B-Chem 239:1033–1041

    CAS  Google Scholar 

  32. Rong M-C, Zhang K-X, Wang Y-R, Chen X (2017) The synthesis of B, N-carbon dots by a combustion method and the application of fluorescence detection for Cu2+. Chinese Chem Lett 28:1119–1124

    CAS  Google Scholar 

  33. Gong Y, Yu B, Yang W, Zhang XL (2016) Phosphorus, and nitrogen co-doped carbon dots as a fluorescent probe for real-time measurement of reactive oxygen and nitrogen species inside macrophages. Biosens Bioelectron 79:822–828

    CAS  PubMed  Google Scholar 

  34. Wang C, Sun D, Zhuo K, Zhang H, Wang J (2014) Simple and green synthesis of nitrogen-, sulfur-, and phosphorus-co-doped carbon dots with tunable luminescence properties and sensing application. RSC Adv 4:54060–54065

    CAS  Google Scholar 

  35. Wu B, Liu X, Shi X, Han W, Wang C, Jiang L (2019) Highly photoluminescent and temperature-sensitive P, N, B-co-doped carbon quantum dots and their highly sensitive recognition for curcumin. RSC Adv 9:8340–8349

    CAS  Google Scholar 

  36. Gong X, Lu W, Paau MC, Hu Q, Wu X, Shuang S, Dong C, Choi MMF (2015) Facile synthesis of nitrogen-doped carbon dots for Fe3+ sensing and cellular imaging. Anal Chim Acta 861:74–84

    CAS  PubMed  Google Scholar 

  37. Gong X, Zhang Q, Gao Y, Shuang S, Choi MMF, Dong C (2016) Phosphorus and nitrogen dual-doped hollow carbon dot as a nanocarrier for doxorubicin delivery and biological imaging. ACS Appl Mater Interfaces 8:11288–11297

    CAS  PubMed  Google Scholar 

  38. Gong X, Wang H, Liu Y, Hu Q, Gao Y, Yang Z, Shuang S, Dong C (2019) A di-functional and label-free carbon-based chem- nanosensor for real-time monitoring of pH fluctuation and quantitative determining of curcumin. Anal Chim Acta 1057:132–144

    CAS  PubMed  Google Scholar 

  39. Wang H, Zhang L, Guo X, Dong W, Wang R, Shuang S, Gong X, Dong C (2019) Comparative study of Cl,N-Cdots and N-Cdots and application for trinitrophenol and ClO sensor and cell-imaging. Anal Chim Acta 1091:76–87

    CAS  PubMed  Google Scholar 

  40. Tillborg H, Nilsson A, Hernnäs B, Mårtensson N, Palmer RE (1993) X-ray and UV photoemission studies of mono-, bi- and multilayers of physisorbed molecules: O2 and N2 on graphite. Surf Sci 295:1–12

    CAS  Google Scholar 

  41. Sodhi RNS, Cavell RG (1986) KLL auger and core level (1s and 2p) photoelectron shifts in a series of gaseous sulfur compounds. J Electron Spectrosc Relat Phemon 41:1–24

    CAS  Google Scholar 

  42. Gong X, Hu Q, Paau MC, Zhang Y, Shuang S, Dong C, Choi MMF (2014) Red-green-blue fluorescent hollow carbon nanoparticles isolated from chromatographic fractions for cellular imaging. Nanoscale 6:8162–8170

    CAS  PubMed  Google Scholar 

  43. Yan CX, Cavell RG (1987) Gas phase phosphorus (1s and 2p) binding energy and auger shifts in some polarizable phosphorus compoinds. J Electron Spectrosc Rela Phemon 42:49–60

    CAS  Google Scholar 

  44. Waltman RJ, Pacansky J, Bates CW (1993) X-ray photoelectron spectroscopic studies on organic photoconductors: evaluation of atomic charges on chlorodiane blue and p-(diethylamino)benzaldehyde diphenylhydrazone. Chem Mater 5:1799–1804

    CAS  Google Scholar 

  45. Chang CM (1993) High resolution XPS of organic polymers: the scienta ESCA300 database (Beamson, G.; Briggs, D.). J Chem Educ 70:A25

    Google Scholar 

  46. Hu Q, Gao L, Rao S-Q, Yang Z-Q, Li T, Gong X (2019) Nitrogen and chlorine dual-doped carbon nanodots for determination of curcumin in food matrix via inner filter effect. Food Chem 280:195–202

    CAS  PubMed  Google Scholar 

  47. Baig MMF, Chen Y-C (2017) Bright carbon dots as fluorescence sensing agents for bacteria and curcumin. J Colloid Interface Sci 501:341–349

    CAS  PubMed  Google Scholar 

  48. Song Y, Zhu S, Xiang S, Zhao X, Zhang J, Zhang H, Fu Y, Yang B (2014) Investigation into the fluorescence quenching behaviors and applications of carbon dots. Nanoscale 6:4676–4682

    CAS  PubMed  Google Scholar 

  49. Zhao J, Zhao G, Liang H, Zhang H (2005) Fluorescence determination of europium with pyridine-2,4,6-tricarboxylicacid. Rare Metals 24:115–118

    CAS  Google Scholar 

  50. Yang C, Huang H (2003) Fluorimetric determination of europium, terbium and dysprosium with orotic or isoorotic acid. Chinese J Anal Chem 31:1079–1081

    CAS  Google Scholar 

  51. Liawruangrath S, Sakulkhaemaruethai S (2003) Flow injection spectrophotometric determination of europium using chlortetracycline. Talanta 59:9–18

    CAS  PubMed  Google Scholar 

  52. Bassett AP, Magennis SW, Glover PB, Lewis DJ, Spencer N, Parsons S, Williams RM, Cola LD, Pikramenou Z (2004) Highly luminescent, triple- and quadruple-stranded, dinuclear Eu, Nd, and Sm(III) lanthanide complexes based on bis-diketonate ligands. J Am Chem Soc 126:9413–9424

    CAS  PubMed  Google Scholar 

  53. Song Y-M, Xu J-P, Ding L, Hou Q, Liu J-W, Zhu Z-L (2009) Syntheses, characterization and biological activities of rare earth metal complexes with curcumin and 1,10-phenanthroline-5,6-dione. J Inorg Biochem 103:396–400

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NO. 21705101), Shanxi Provincial Key Research and Development Project (201903D121109), China Postdoctoral Science Foundation (No. 2018 M642969), and Natural Science Foundation of Shanxi Province (No. 201801D121040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuan Dong or Xiaojuan Gong.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2993 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Y., Wang, H., Wang, Z. et al. Nitrogen, sulfur, phosphorus, and chlorine co-doped carbon nanodots as an “off-on” fluorescent probe for sequential detection of curcumin and europium ion and luxuriant applications. Microchim Acta 188, 16 (2021). https://doi.org/10.1007/s00604-020-04618-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04618-8

Keywords

Navigation