Skip to main content
Log in

Synthesis of three-dimensional nickel ferrite nanospheres decorated activated graphite nanoplatelets for electrochemical detection of vortioxetine with pharmacokinetic insights in human volunteers

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An innovative electrochemical nanoprobe was developed for determination of vortioxetine (VORT), a serotonergic antidepressant drug, for the first time. The fabrication of the nanoprobe is based on decoration of a glassy carbon electrode with three-dimensional nickel ferrite nanospheres modified activated graphite nanoplatelets (3D NiFe2O4 NS/AGNP/GCE). The morphological characterization of the nanoprobe was carried out via scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDS), N2-adsorption-desorption isotherm, and powder X-ray spectroscopy (PXRD). In addition, the electrochemical behavior of the nanoprobe was described using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). A well-defined and irreversible peak at 0.82 V was seen at the surface of 3D NiFe2O4 NS/AGNP/GCE. The proposed nanoprobe exhibited outstanding electro-catalytic activity towards VORT oxidation. Under the optimized conditions, the anodic oxidation currents were linearly proportional to VORT concentration at the working range 1.8–90 nM with a LOD of 0.55 nM. The nanoprobe was used to determine VORT in pharmaceutical tablets and human plasma samples. Satisfactory recoveries and RSD percentages were obtained in the range 103.8–107.7% (RSD% = 2.7–3.1%) and 101.4–105.3% (RSD % = 2.8–3.4%) for tablets and plasma samples, respectively. Moreover, the method was used to monitor VORT during a pharmacokinetic study in human volunteers with satisfactory results. The 3D NiFe2O4 NS/AGNP/GCE shows excellent sensitivity, reproducibility, and selectivity towards VORT detection. The proposed electrode could be utilized as simple, rapid, and inexpensive sensing tool for routine analysis and during pharmacokinetic/pharmacodynamic investigations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Oyesanya TO, Ward EC (2016) Mental health in women with traumatic brain injury: a systematic review on depression and hope. Health Care Women Int 37:45–74. https://doi.org/10.1080/07399332.2015.1005307

    Article  PubMed  Google Scholar 

  2. Lopez MA, Basco MA (2015) Effectiveness of cognitive behavioral therapy in public mental health: comparison to treatment as usual for treatment-resistant depression. Admin Pol Ment Health 42:87–98. https://doi.org/10.1007/s10488-014-0546-4

    Article  Google Scholar 

  3. Levecque K, Rossem RV (2015) Depression in Europe: does migrant integration have mental health payoffs? A cross-national comparison of 20 European countries. Ethn Health 20:49–65. https://doi.org/10.1080/13557858.2014.883369

    Article  PubMed  Google Scholar 

  4. Gibb A, Deeks ED (2014) Vortioxetine: first global approval. Drugs 74:135–145. https://doi.org/10.1007/s40265-013-0161-9

    Article  CAS  PubMed  Google Scholar 

  5. Baldwin DS, Florea I, Jacobsen PL, Zhong W, Nomikos GG (2016) A meta-analysis of the efficacy of vortioxetine in patients with major depressive disorder (MDD) and high levels of anxiety symptoms. J Affect Disord 206:140–150. https://doi.org/10.1016/j.jad.2016.07.015

    Article  CAS  PubMed  Google Scholar 

  6. Bidzan L, Mahableshwarkar AR, Jacobsen P, Yan M, Sheehan DV (2012) Vortioxetine (Lu AA21004) in generalized anxiety disorder: results of an 8-week, multinational, randomized, double-blind, placebo-controlled clinical trial. Eur Neuropsychopharmacol 22:847–857. https://doi.org/10.1016/j.euroneuro.2012.07.012

    Article  CAS  PubMed  Google Scholar 

  7. McIntyre RS, Lophaven S, Olsen CK (2014) A randomized, double-blind, placebo-controlled study of vortioxetine on cognitive function in depressed adults. Int J Neuropsychopharmacol 17:1557–1567. https://doi.org/10.1017/S1461145714000546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gu EM, Huang CK, Liang BQ, Yuan LJ, Lan T, Hu G, Zhou H (2015) An UPLC-MS/MS method for the quantitation of vortioxetine in rat plasma: application to a pharmacokinetic study. J Chromatogr B 997:70–74. https://doi.org/10.1016/j.jchromb.2015.05.010

    Article  CAS  Google Scholar 

  9. Huang Y, Zheng SL, Pan YY, Li T, Xu ZS, Shao MM (2016) Simultaneous quantification of vortioxetine, carvedilol and its active metabolite 4-hydroxyphenyl carvedilol in rat plasma by UPLC-MS/MS: application to their pharmacokinetic interaction study. J Pharmaceut Biomed 128:184–190. https://doi.org/10.1016/j.jpba.2016.05.029

    Article  CAS  Google Scholar 

  10. Kall MA, Rohde M, Jorgensen M (2015) Quantitative determination of the antidepressant vortioxetine and its major human metabolite in plasma. Bioanalysis 7:2881–2894. https://doi.org/10.4155/bio.15.207

    Article  CAS  PubMed  Google Scholar 

  11. Yi Y, Ren G, Zheng M, Zhao D, Li N, Chen X, Lu Y (2020) Simultaneous determination of deuterated vortioxetine and its major metabolite in human plasma by UPLC-MS/MS and application to a pharmacokinetic study in healthy volunteers. J Chromatogr B 1138:121955. https://doi.org/10.1016/j.jchromb.2019.121955

    Article  CAS  Google Scholar 

  12. Kertys M, Krivosova M, Ondrejkac I, Hrtanek I, Tonhajzerova I, Mokry J (2020) Simultaneous determination of fluoxetine, venlafaxine, vortioxetine and their active metabolites in human plasma by LC–MS/MS using one-step sample preparation procedure. J Pharm Biomed Anal 18:113098. https://doi.org/10.1016/j.jpba.2020.113098

    Article  CAS  Google Scholar 

  13. Petruczynik A, Wróblewski K, Wróblewski K, Wojtanowski KK, Wojtanowski KK, Mroczek T, Juchnowicz D, Karakuła-Juchnowicz H, Tuzimski T (2020) Comparison of various chromatographic systems for identification of vortioxetine in bulk drug substance, human serum, saliva, and urine samples by HPLC-DAD and LC-QTOF-MS. Molecules 25:2483. https://doi.org/10.3390/molecules25112483

    Article  CAS  PubMed Central  Google Scholar 

  14. Ateş AK, Er E, Çelikkan H, Erk N (2019) The fabrication of a highly sensitive electrochemical sensor based on AuNPs@graphene nanocomposite: application to the determination of antidepressant vortioxetine. Microchem J 148:306–312. https://doi.org/10.1016/j.microc.2019.04.082

    Article  CAS  Google Scholar 

  15. D’Agostino A, English CD, Rey JA (2015) Vortioxetine (Brintellix): a new serotonergic antidepressant. Pharm Therap 40:36–40

    Google Scholar 

  16. El-Wekil MM, Mahmoud AM, Marzouk AA, Alkahtani SA, Ali R (2018) A novel molecularly imprinted sensing platform based on MWCNTs/AuNPs decorated 3D starfish like hollow nickel skeleton as a highly conductive nanocomposite for selective and ultrasensitive analysis of a novel pan-genotypic inhibitor velpatasvir in body fluids. J Mol Liq 271:105–111. https://doi.org/10.1016/j.molliq.2018.08.105

    Article  CAS  Google Scholar 

  17. El-Wekil MM, Ali HRH, Marzouk AA, Ali R (2018) Synthesis of Fe3O4 nanobead-functionalized 8-hydroxyquinoline sulfonic acid supported by an ion-imprinted biopolymer as a recognition site for Al3+ ions: estimation in human serum and water samples. New J Chem 42:9828–9836. https://doi.org/10.1039/C8NJ01141A

    Article  CAS  Google Scholar 

  18. Sakthinathan S, Kubendhiran S, Chen SM, Karuppiah C, Chiu TW (2017) Novel bifunctional electrocatalyst for ORR activity and methyl parathion detection based on reduced graphene oxide/palladium tetraphenylporphyrin nanocomposite. J Phys Chem C 121:14096–14107. https://doi.org/10.1021/acs.jpcc.7b01941

    Article  CAS  Google Scholar 

  19. Palanisamy S, Sakthinathan S, Chen SM, Thirumalraj B, Wu TH, Lou BS, Liu X (2016) Preparation of β-cyclodextrin entrapped graphite composite for sensitive detection of dopamine. Carbohydr Polym 135:267–273. https://doi.org/10.1016/j.carbpol.2015.09.008

    Article  CAS  PubMed  Google Scholar 

  20. Sakthinathan S, Kubendhiran S, Chen SM, Tamizhdurai P (2016) Reduced graphene oxide/gold tetraphenyl porphyrin (RGO/Au–TPP) nanocomposite as an ultrasensitive amperometric sensor for environmentally toxic hydrazine. RSC Adv 6:56375–56383. https://doi.org/10.1039/C6RA09129F

    Article  CAS  Google Scholar 

  21. Sakthinathan S, Kubendhiran S, Chen SM (2017) Hydrothermal synthesis of three dimensional graphene-multiwalled carbon nanotube nanocomposite for enhanced electro catalytic oxidation of caffeic acid. Electroanalysis 29:1103–1112. https://doi.org/10.1002/elan.201600687

    Article  CAS  Google Scholar 

  22. Howe JP (1952) Properties of graphite. J Am Ceram Soc 35:275–283. https://doi.org/10.1111/j.1151-2916.1952.tb13048.x

    Article  CAS  Google Scholar 

  23. Ponomarenko LA, Schedin F, Katsnelson MI, Yang R, Hill EW, Novoselov KS, Geim AK (2008) Chaotic Dirac billiard in graphene quantum dots. Science 320:356–358. https://doi.org/10.1126/science.1154663

    Article  CAS  PubMed  Google Scholar 

  24. Zhang HB, Wang JW, Yan Q, Zheng WG, Chen C, Yu ZZ (2011) Vacuum-assisted synthesis of graphene from thermal exfoliation and reduction of graphite oxide. J Mater Chem 21:5392–5397. https://doi.org/10.1039/C1JM10099H

    Article  CAS  Google Scholar 

  25. Du W, Jiang X, Zhu L (2013) From graphite to graphene: direct liquid-phase exfoliation of graphite to produce single- and few-layered pristine graphene. J Mater Chem A 1:10592–10606. https://doi.org/10.1039/C3TA12212C

    Article  CAS  Google Scholar 

  26. Xuewan W, Gengzhi S, Parimal R, Dong-Hwan K, Wei H, Peng C (2014) Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev 43:7067–7098. https://doi.org/10.1039/C4CS00141A

    Article  Google Scholar 

  27. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011) Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49:2917–2925. https://doi.org/10.1016/j.carbon.2011.02.068

    Article  CAS  Google Scholar 

  28. Yongye L, Hailiang W, Hernan SC, Zhuo C, Hongjie D (2010) TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. NanoRes. 3:701–705. https://doi.org/10.1007/s12274-010-0033-5

    Article  CAS  Google Scholar 

  29. Xu TG, Zhang LW, Cheng HY, Zhu YF (2011) Microwave-assisted synthesis of ZnO–graphene composite for photocatalytic reduction of Cr (VI). Catal Sci Technol 1:1189–1193. https://doi.org/10.1039/C1CY00109D

    Article  Google Scholar 

  30. Bai S, Shen X, Zhong X, Liu Y, Zhu G, Xu X, Chen K (2012) One-pot solvothermal preparation of magnetic reduced graphene oxide-ferrite hybrids for organic dye removal. Carbon 50:2337–2346. https://doi.org/10.1016/j.carbon.2012.01.057

    Article  CAS  Google Scholar 

  31. Xiao Y, Zai J, Tao L, Li B, Han Q, Yu C, Qian X (2013) MnFe2O4–graphene nanocomposites with enhanced performances as anode materials for Li-ion batteries. Phys Chem Chem Phys 15:3939–3945. https://doi.org/10.1039/C3CP50220A

    Article  CAS  PubMed  Google Scholar 

  32. El-Wekil MM, Mahmoud AM, Alkahtani SA, Marzouk AA, Ali R (2018) A facile synthesis of 3D NiFe2O4 nanospheres anchored on a novel ionic liquid modified reduced graphene oxide for electrochemical sensing of ledipasvir: application to human pharmacokinetic study. Biosens Bioelectron 109:164–170. https://doi.org/10.1016/j.bios.2018.03.015

    Article  CAS  PubMed  Google Scholar 

  33. Tabrizi A, Arsalani N, Mohammadi A, Namazi H, Saleh L (2017) Facile synthesis of a MnFe2O4/rGO nanocomposite for an ultra-stable symmetric supercapacitor. New J Chem 41:4974–4984. https://doi.org/10.1039/C6NJ04093D

    Article  Google Scholar 

  34. Santhosh C, Pratap K, Eswara V, Komaralac PR, Sejal D (2015) Solvothermal synthesis of MnFe2O4-graphene composite—investigation of its adsorption and antimicrobial properties. Appl Surf Sci 327:27–36. https://doi.org/10.1016/j.apsusc.2014.11.096

    Article  CAS  Google Scholar 

  35. Navale T, Mali VV, Pawar SA, Mane RS, Naushad M, Stadler FJ, Patil VB (2015) Electrochemical supercapacitor development based on electrodeposited nickel oxide film. RSC Adv 5:51961–51965. https://doi.org/10.1039/C5RA07953E

    Article  CAS  Google Scholar 

  36. Alkahtani SA, Mahmoud AM, Mahnashi MH, Ali R, El-Wekil MM (2020) Facile fabrication of a novel 3D rose like lanthanum doped zirconia decorated reduced graphene oxide nanosheets: an efficient electro-catalyst for electrochemical reduction of futuristic anti-cancer drug salinomycin during pharmacokinetic study. Biosens Bioelectron 150:111849. https://doi.org/10.1016/j.bios.2019.111849

    Article  CAS  PubMed  Google Scholar 

  37. Chen G, Højer AM, Areberg J, Nomikos G (2018) Vortioxetine: clinical pharmacokinetics and drug interactions. Clin Pharmacokinet 57:673–686. https://doi.org/10.1007/s40262-017-0612-7

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mater H. Mahnashi.

Ethics declarations

Conflict of interest

The experiment complied with the guidlines of KSA regulations and approved by the Institutional Human Ethics Committe, Najran University. Informed consent of all individual participants' biological samples was obtained from Najran University Clinics, KSA.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2009 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahnashi, M.H. Synthesis of three-dimensional nickel ferrite nanospheres decorated activated graphite nanoplatelets for electrochemical detection of vortioxetine with pharmacokinetic insights in human volunteers. Microchim Acta 187, 519 (2020). https://doi.org/10.1007/s00604-020-04523-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04523-0

Keywords

Navigation