Skip to main content
Log in

Molecularly imprinted sol-gel electrochemical sensor for sildenafil based on a pencil graphite electrode modified by Preyssler heteropolyacid/gold nanoparticles/MWCNT nanocomposite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical sensor based on the imprinted sol-gel on pencil graphite electrode (PGE) modified with functionalized multiwalled carbon nanotube (MWCNT), gold nanoparticles (AuNPs), and Preyssler heteropolyacid (PHPA) nanohybrid was fabricated for the determination of trace amounts of sildenafil. The pencil graphite electrode was first deposited by the AuNPs@PHPA-MWCNT nanohybrids, and then, the modified electrode of MIP-sol-gel/AuNPs@PHPA-MWCNTs was prepared by the electrochemical method. The synthesized nanohybrids and prepared modified electrodes were characterized with FE-SEM, FTIR, EDX, XRD, and UV/Vis. Cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulse voltammetry techniques were applied for the electrochemical analysis using the modified electrodes. By measuring the oxidation and reduction currents of the potassium ferricyanide probe, the efficiency of this sensor was evaluated for the detection of sildenafil. The anodic peak current was measured at 0.2 V vs. Ag/AgCl by differential pulse voltammetry in the potential range − 0.1 to 0.5 V (vs. Ag/AgCl). Under the optimum conditions, the current response for the detection of sildenafil was linear in two concentration ranges of 0.1–2 and 2–30 nM and the obtained limit of detection was 0.033 nM. The constructed sensor was used for the measurement of sildenafil in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Othman AM, Rizk NMH, El-Shahawi MS (2004) Polymer membrane sensors for sildenafil citrate (Viagra) determination in pharmaceutical preparations. Anal Chim Acta 515:303–309. https://doi.org/10.1016/j.aca.2004.01.016

    Article  CAS  Google Scholar 

  2. Barnett CF, Machado RF (2006) Sildenafil in the treatment of pulmonary hypertension. Vasc Health Risk Manag 2:411–422. https://doi.org/10.2147/vhrm.2006.2.4.411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tunctan B, Korkmaz B, Yildırım H, Tamer L, Atik U, Buharalıolu CK (2005) Increased production of nitric oxide contributes to renal oxidative stress in endotoxemic rat. Am J Infect Dis 1:111–115. https://doi.org/10.3844/ajidsp.2005.111.115

    Article  CAS  Google Scholar 

  4. Weinmann W, Bohnert M, Wiedemann A, Renz M, Lehmann N, Pollak S (2001) Post-mortem detection and identification of sildenafil (Viagra) and its metabolites by LC/MS and LC/MS/MS. Int J Legal Med 114:252–258. https://doi.org/10.1007/s004140000178

    Article  CAS  PubMed  Google Scholar 

  5. Dinesh N, Nagaraja P, Gowda NM, Rangappa K (2002) Extractive spectrophotometric methods for the assay of sildenafil citrate (Viagra) in pure form and in pharmaceutical formulations. Talanta 57:757–764. https://doi.org/10.1016/s0039-9140(02)00097-8

    Article  CAS  PubMed  Google Scholar 

  6. Wang CC, Gomez RA, Fernandez LP (2013) Determination of sildenafil by preconcentration on surfactant coated polymeric resin followed by spectrofluorimetry. J Pharmaceut Anal 3:173–179. https://doi.org/10.1016/j.jpha.2012.11.001

    Article  CAS  Google Scholar 

  7. Jiang H, Zhan HL, Wu XF (2004) Spectrophotometric method for the determination of sildenafil with methylene blue. J Anal Sci 20:287–289. https://doi.org/10.2116/analsci.7.supple_61

    Article  CAS  Google Scholar 

  8. Amin AS, Moustafa ME, El-Dosoky RM (2009) Colorimetric determination of sildenafil citrate (Viagra) through ion-associate complex formation. J AOAC Int 92:125–130. https://doi.org/10.1093/jaoac/92.1.125

    Article  CAS  PubMed  Google Scholar 

  9. Tyszczuk K, Korolczuk M (2010) Voltammetric method for the determination of sildenafil citrate (Viagra) in pure form and in pharmaceutical formulations. Bioelectrochem. 78:113–117. https://doi.org/10.1016/j.bioelechem.2009.08.005

    Article  CAS  Google Scholar 

  10. Uslu B, Dogan B, Özkan SA, Aboul-Enein HY (2005) Electrochemical behavior of vardenafil on glassy carbon electrode: determination in tablets and human serum. Anal Chim Acta 552:127–134. https://doi.org/10.1016/j.aca.2005.07.040

    Article  CAS  Google Scholar 

  11. Berzas J, Rodriguez J, Castañeda G, Villaseñor M (2000) Voltammetric behavior of sildenafil citrate (Viagra) using square wave and adsorptive stripping square wave techniques: determination in pharmaceutical products. Anal Chim Acta 417:143–148. https://doi.org/10.1016/s0003-2670(00)00932-6

    Article  CAS  Google Scholar 

  12. Nascimento VB, Angnes L (1998) Screen-printed electrodes. Quím Nova 21:614–629. https://doi.org/10.1590/S0100-40421998000500014

    Article  CAS  Google Scholar 

  13. Kan X, Zhou H, Li C, Zhu A, Xing Z, Zhao Z (2012) Imprinted electrochemical sensor for dopamine recognition and determination based on a carbon nanotube/polypyrrole film. Electrochim Acta 63:69–75. https://doi.org/10.1016/j.electacta.2011.12.086

    Article  CAS  Google Scholar 

  14. Ye L, Mosbach K (2008) Molecular imprinting: synthetic materials as substitutes for biological antibodies and receptors. Chem Mater 20:859–868. https://doi.org/10.1021/cm703190w

    Article  CAS  Google Scholar 

  15. Cui M, Huang J, Wang Y, Wu Y, Luo X (2015) Molecularly imprinted electrochemical sensor for propyl gallate based on PtAu bimetallic nanoparticles modified graphene-carbon nanotube composites. Biosens Bioelectron 68:68563–68569. https://doi.org/10.1016/j.bios.2015.01.029

    Article  CAS  Google Scholar 

  16. Lakshmi D, Bossi A, Whitcombe MJ, Chianella I, Fowler SA, Subrahmanyam S, Piletska EV, Piletsky SA (2009) Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element. Anal Chem 81:3576–3584. https://doi.org/10.1021/ac802536p

    Article  CAS  PubMed  Google Scholar 

  17. Huang J, Zhang X, Lin Q, He X, Xing X, Huai H, Lian W, Zhu H (2011) Electrochemical sensor based on imprinted sol-gel and nanomaterials for sensitive determination of bisphenol A. Food Control 22:786–791. https://doi.org/10.1016/j.foodcont.2010.11.017

    Article  CAS  Google Scholar 

  18. Hench LL, West JK (1990) The sol-gel process. Chem Rev 90:33–72. https://doi.org/10.1021/cr00099a003

    Article  CAS  Google Scholar 

  19. Marx S, Zaltsman AZ, Turyan I, Mandler D (2004) Parathion sensor based on molecularly imprinted sol-gel films. Anal Chem 76:120–126. https://doi.org/10.1021/ac034531s

    Article  CAS  Google Scholar 

  20. Zou YJ, Xiang C, Sun LX, Xu F (2008) Glucose biosensor based on electrode-position of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol-gel. Biosens Bioelectron 23:1010–1016. https://doi.org/10.1021/ja00263a046

    Article  CAS  PubMed  Google Scholar 

  21. Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, De Rossi D, Rinzler AG (1999) Carbon nanotube actuators. Science 284:1340–1344. https://doi.org/10.1126/science.284.5418.1340

    Article  CAS  PubMed  Google Scholar 

  22. Pope MT, Müller A (1991) Polyoxometalate chemistry: an old field with new dimensions in several disciplines. Angew Chem Int Ed Eng 30:34–48. https://doi.org/10.1002/anie.199100341

    Article  Google Scholar 

  23. Ma YY, Wu CX, Feng XJ, Tan HQ, Yan LK, Liu Y, Kang ZH, Wang EB, Li YG (2017) Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy Environ Sci 10:788–798. https://doi.org/10.1039/C6EE03768B

    Article  CAS  Google Scholar 

  24. Du DY, Qin JS, Wang TT, Li SL, Su ZM, Shao KZ, Lan YQ, Wang XL, Wang EB (2012) Polyoxometalate-based crystalline tubular microreactor: redox-active inorganic–organic hybrid materials producing gold nanoparticles and catalytic properties. Chem Sci 3:705–710. https://doi.org/10.1039/C2SC00586G

    Article  CAS  Google Scholar 

  25. Hill CL, Brown RB (1986) Sustained epoxidation of olefins by oxygen donors catalyzed by transition metal-substituted polyoxometalates, oxidatively resistant inorganic analogs of metalloporphyrins. J Am Chem Soc 108:536–538. https://doi.org/10.1021/ja00263a046

    Article  CAS  PubMed  Google Scholar 

  26. Batista EF, Sartori ER, Medeiros RA, Rocha-Filho RC, Fatibello-Filho O (2010) Differential pulse voltammetric determination of sildenafil citrate (Viagra®) in pharmaceutical formulations using a boron-doped diamond electrode. Anal Lett 43:1046–1054. https://doi.org/10.1080/00032710903491153

    Article  CAS  Google Scholar 

  27. Farghali R, Ahmed RA (2015) Gold nanoparticles-modified screen-printed carbon electrode for voltammetric determination of sildenafil citrate (Viagra) in pure form, biological and pharmaceutical formulations. Int J Electrochem Sci 10:1494–1505

    Google Scholar 

  28. Delolo FG, Rodrigues C, Silva MMD, Dinelli LR, Delling FN, Zukerman-Schpector J, Batista AA (2014) A new electrochemical sensor containing a film of chitosan-supported ruthenium: detection and quantification of sildenafil citrate and acetaminophen. J Braz Chem Soc 25:540–549. https://doi.org/10.5935/0103-5053.20140031

    Article  CAS  Google Scholar 

  29. Lović J, Trisovic N, Antanasijević J, Nikolić ND, Stevanović S, Mijin D, Vuković D, Mladenović A, Petrović S, Ivić MA (2016) Electrochemical determination of sildenafil citrate as standard, in tablets and spiked with human serum at gold and cystein modified gold electrode. J Electroanal Chem 782:103–107. https://doi.org/10.1016/j.jelechem.2016.10.022

    Article  CAS  Google Scholar 

  30. Levent A, Önal G (2018) Simultaneous electrochemical evaluation of ascorbic acid, epinephrine and uric acid at disposable pencil graphite electrode: highly sensitive determination in pharmaceuticals and biological liquids by differential pulse voltammetry. Comb Chem High Throughput Screen 21:516–525. https://doi.org/10.2174/1386207321666180914120839

    Article  CAS  PubMed  Google Scholar 

  31. Prasad BB, Fatma S (2017) One MoNomer doubly imprinted dendrimer nanofilm modified pencil graphite electrode for simultaneous electrochemical determination of norepinephrine and uric acid. Electrochim Acta 232:474–483. https://doi.org/10.1016/j.electacta.2017.02.165

    Article  CAS  Google Scholar 

  32. Martins TS, Bott-Neto JL, Raymundo-Pereira PA, Ticianelli EA, Machado SA (2018) An electrochemical furosemide sensor based on pencil graphite surface modified with polymer film Ni-salen and Ni(OH)2/C nanoparticles. Sensors Actuators B Chem 276:378–387. https://doi.org/10.1016/j.snb.2018.08.131

    Article  CAS  Google Scholar 

  33. Demetriades D, Economou A, Voulgaropoulos A (2004) A study of pencil-lead bismuth-film electrodes for the determination of trace metals by anodic stripping voltammetry. Anal Chim Acta 519:167–172. https://doi.org/10.1016/j.aca.2004.05.008

    Article  CAS  Google Scholar 

  34. Karadeniz H, Gulmez B, Sahinci F, Erdem A, Kaya GI, Unver N, Kivcak B, Ozsoz M (2003) Disposable electrochemical biosensor for the detection of the interaction between DNA and lycorine based on guanine and adenine signals. J Pharm Biomed Anal 33:295–302. https://doi.org/10.1016/S0731-7085(03)00283-8

    Article  CAS  PubMed  Google Scholar 

  35. Wang J, Kawde AN, Sahlin E (2000) Renewable pencil electrodes for highly sensitive stripping potentiometric measurements of DNA and RNA. Analyst. 125:5–7. https://doi.org/10.1039/A907364G

    Article  CAS  PubMed  Google Scholar 

  36. Matsunaga S, Otaki T, Inoue Y, Mihara K, Nomiya K (2016) Synthesis, structure, and characterization of In10-containing open-Wells–Dawson polyoxometalate. Inorganics. 4:16–25. https://doi.org/10.3390/inorganics4020016

    Article  CAS  Google Scholar 

  37. Ardila JA, Oliveira JJ, Medeiros RA, Fatibello-Filho O (2013) Determination of gemfibrozil in pharmaceutical and urine samples by square-wave adsorptive stripping voltammetry using a glassy carbon electrode modified with multi-walled carbon nanotubes within a dihexadecyl hydrogen phosphate film. J Electroanal Chem 690:32–37. https://doi.org/10.1016/j.jelechem.2012.11.038

    Article  CAS  Google Scholar 

  38. Li S, Yu X, Zhang G, Ma Y, Yao J, Keita B, Zhao BH (2011) Green chemical decoration of multiwalled carbon nanotubes with polyoxometalate-encapsulated gold nanoparticles: visible light photocatalytic activities. J Mater Chem 21:2282–2287. https://doi.org/10.1039/c0jm02683b

    Article  CAS  Google Scholar 

  39. Rezaei B, Lotfi-Forushani H, Ensafi AA (2014) Modified Au nanoparticles-imprinted sol-gel, multiwall carbon nanotubes pencil graphite electrode used as a sensor for ranitidine determination. Mater Sci Eng C 37:113–119. https://doi.org/10.1016/j.msec.2013.12.036

    Article  CAS  Google Scholar 

  40. Rezaei B, Boroujeni MK, Ensafi AA (2014) A novel electrochemical nanocomposite imprinted sensor for the determination of lorazepam based on modified polypyrrole@sol-gel@gold nanoparticles/pencil graphite electrode. Electrochim Acta 123:332–339. https://doi.org/10.1016/j.electacta.2014.01.056

    Article  CAS  Google Scholar 

  41. Torrejos REC, Nisola GM, Park MJ, Shon HK, Seo JG, Koo S, Chung WJ (2015) Synthesis and characterization of multi-walled carbon nanotubes-supported dibenzo-14-crown-4 ether with proton ionizable carboxyl sidearm as Li+ adsorbents. Chem Eng J 264:89–98. https://doi.org/10.1016/j.cej.2014.11.036

    Article  CAS  Google Scholar 

  42. Tayebee R, Jarrahi M H6P2W18O62/Nanoclinoptilolite as an efficient nanohybrid catalyst in the cyclotrimerization of aryl methyl ketones under solvent-free conditions. RSC Adv 5:21206–21214. https://doi.org/10.1039/c5ra01344e

  43. Giannakoudakis DA, Colón-Ortiz J, Landers J, Murali S, Florent M, Neimark AV, Bandosz TJ (2019) Polyoxometalate hybrid catalyst for detection and photodecomposition of mustard gas surrogate vapors. Appl Surf Sci 467:428–438. https://doi.org/10.1016/j.apsusc.2018.10.167

    Article  CAS  Google Scholar 

  44. Sardashti MK, Zendehdel M, Nia NY, Karimian D, Sheikhi M (2017) High efficiency MAPbI3 perovskite solar cell using a pure thin film of polyoxometalate as scaffold layer. ChemSusChem 10:3773–3779. https://doi.org/10.1002/cssc.201701764

    Article  CAS  PubMed  Google Scholar 

  45. Triantis T, Troupis A, Gkika E, Alexakos G, Boukos N (2009) Photocatalytic synthesis of Se nanoparticles using polyoxometalates. Catal Today 144:2–6. https://doi.org/10.1016/j.cattod.2008.12.028

    Article  CAS  Google Scholar 

  46. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. John Wiley and Sons, Inc., New York

    Google Scholar 

  47. Bonanni A, Pumera M (2011) Y Miyahara. Influence of gold nanoparticle size (2–50 nm) upon its electrochemical behavior: an electrochemical impedance spectroscopic and voltammetric study. Phys Chem Chem Phys 13:4980–4986. https://doi.org/10.1039/C0CP01209B

    Article  CAS  PubMed  Google Scholar 

  48. Lian W, Liu S, Yu J, Li J, Cui M, Xu W, Huang J (2013) Electrochemical sensor usingneomycin-imprinted film as recognition element based on chitosan-silvernanoparticles/graphene-multiwalled carbon nanotubes composites modifiedelectrode. Biosens Bioelectron 44:70–76. https://doi.org/10.1016/j.bios.2013.01.002

    Article  CAS  PubMed  Google Scholar 

  49. Stefan-van Staden RI, Van Staden JF, Aboul-Enein HY (2010) Diamond paste-based electrodes for the determination of sildenafil citrate (Viagra). J Solid State Electrochem 14:997–1000. https://doi.org/10.1007/s10008-009-0901-7

    Article  CAS  Google Scholar 

  50. Sasal A, Tyszczuk-Rotko K (2019) Screen-printed sensor for determination of sildenafil citrate in pharmaceutical preparations and biological samples. Microchem J 149:104065–104072. https://doi.org/10.1016/j.microc.2019.104065

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thanks Damghan University Research Council for supporting this work. We also gratefully acknowledge Tavan Research and Educational Institute for the donation of sildenafil drug.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Soleymanpour.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 498 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouhani, M., Soleymanpour, A. Molecularly imprinted sol-gel electrochemical sensor for sildenafil based on a pencil graphite electrode modified by Preyssler heteropolyacid/gold nanoparticles/MWCNT nanocomposite. Microchim Acta 187, 512 (2020). https://doi.org/10.1007/s00604-020-04482-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04482-6

Keywords

Navigation