Skip to main content
Log in

Unsupported liquid-state platform for SERS-based determination of triazophos

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A highly reproducible surface-enhanced Raman scattering (SERS) unsupported liquid-state platform (ULP) was developed for accurate quantitative determination of triazophos. Herein, citrate-reduced Ag NPs suspension was concentrated and placed in a stainless steel perforated template to form the SERS ULP. The relative standard deviation of the SERS measurements was less than 5% (n ≥ 10), and the R2 of the calibration curve was 0.994. The developed SERS ULP was applied for determination of triazophos in spiked agricultural products (rice, cabbage, and apple). Experiment results showed that the coefficient of variation ranged from 5.3 to 6.2% for intra-day and from 5.5 to 6.3% for inter-day (n = 3), which proved excellent SERS reproducibility. Moreover, the results were in good agreement with those from HPLC analysis. As a liquid-state SERS substrate, the highly reproducible ULP can perform precision quantitative analysis without surface modification of NPs, which is a significant improvement. This method provides a new perspective for quantitative SERS analysis of pesticide residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jiang J, Zou S, Li Y, Zhao F, Chen J, Wang S, Wu H, Xu J, Chu M, Liao J, Zhang Z (2019) Flexible and adhesive tape decorated with silver nanorods for in-situ analysis of pesticides residues and colorants. Microchim Acta 186:603

    Article  CAS  Google Scholar 

  2. Yang T, Doherty J, Guo H, Zhao B, Clark JM, Xing B, Hou R, He L (2019) Real-time monitoring of pesticide translocation in tomato plants by surface-enhanced Raman spectroscopy. Anal Chem 91:2093–2099

    Article  CAS  PubMed  Google Scholar 

  3. Tuzimski T, Rejczak T (2016) Application of HPLC–DAD after SPE/QuEChERS with ZrO2-based sorbent in d-SPE clean-up step for pesticide analysis in edible oils. Food Chem 190:71–79

    Article  CAS  PubMed  Google Scholar 

  4. Abdulra’uf LB, Tan GH (2015) Chemometric approach to the optimization of HS-SPME/GC–MS for the determination of multiclass pesticide residues in fruits and vegetables. Food Chem 177:267–273

    Article  PubMed  CAS  Google Scholar 

  5. Yang F-W, Li Y-X, Ren F-Z, Wang R, Pang G-F (2019) Toxicity, residue, degradation and detection methods of the insecticide triazophos. Environ Chem Lett 17:1769–1785

    Article  CAS  Google Scholar 

  6. He Y, Hong S, Wang M, Wang J, Abd El-Aty AM, Wang J, Hacimuftuoglu A, Khan M, She Y (2020) Development of fluorescent lateral flow test strips based on an electrospun molecularly imprinted membrane for detection of triazophos residues in tap water. New J Chem 44:6026–6036

    Article  CAS  Google Scholar 

  7. Gui WJ, Liang CZ, Guo YR, Zhu GNA (2010) An improved rapid on-site immunoassay for triazophos in environmental samples. Anal Lett 43:487–498 [In English]

    Article  CAS  Google Scholar 

  8. Chen G, Yang LH, Jin MJ, Du PF, Zhang C, Wang J, Shao H, Jin F, Zheng LF, Wang SS, She YX, Wang J (2015) The rapid screening of triazophos residues in agricultural products by chemiluminescent enzyme immunoassay. PLoS One 10:10 [In English]

    Google Scholar 

  9. Wen S, Su Y, Dai C, Jia J, Fan G-C, Jiang L-P, Song R, Zhu J-J (2019) Plasmon coupling-enhanced Raman sensing platform integrated with exonuclease-assisted target recycling amplification for ultrasensitive and selective detection of microRNA-21. Anal Chem 91:12298–12306

    Article  CAS  PubMed  Google Scholar 

  10. Sun J, Gong L, Wang W, Gong Z, Wang D, Fan M (2020) Surface-enhanced Raman spectroscopy for on-site analysis: a review of recent developments. Luminescence

  11. Fan M, Andrade GF, Brolo AG (2019) A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal Chim Acta

  12. Fan M, Andrade GF, Brolo AG (2011) A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chim Acta 693:7–25

    Article  CAS  PubMed  Google Scholar 

  13. Li D, Duan H, Wang Y, Zhang Q, Cao H, Deng W, Li D (2017) On-site preconcentration of pesticide residues in a drop of seawater by using electrokinetic trapping, and their determination by surface-enhanced Raman scattering. Microchim Acta 185:10

    Article  CAS  Google Scholar 

  14. Zhang Q, Li D, Cao X, Gu H, Deng W (2019) Self-assembled microgels arrays for electrostatic concentration and surface-enhanced Raman spectroscopy detection of charged pesticides in seawater. Anal Chem 91:11192–11199

    Article  CAS  PubMed  Google Scholar 

  15. Huang D, Zhao J, Wang M, Zhu S (2020) Snowflake-like gold nanoparticles as SERS substrates for the sensitive detection of organophosphorus pesticide residues. Food Control 108:106835

    Article  CAS  Google Scholar 

  16. Yaseen T, Pu H, Sun DW (2019) Rapid detection of multiple organophosphorus pesticides (triazophos and parathion-methyl) residues in peach by SERS based on core-shell bimetallic Au@Ag NPs. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 36:762–778

    Article  CAS  PubMed  Google Scholar 

  17. Fang H, Zhang X, Zhang SJ, Liu L, Zhao YM, Xu HJ (2015) Ultrasensitive and quantitative detection of paraquat on fruits skins via surface-enhanced Raman spectroscopy. Sensors Actuators B Chem 213:452–456

    Article  CAS  Google Scholar 

  18. Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguie B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, Garcia de Abajo FJ, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Kall M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li JF, Ling XY, Maier S, Mayerhoefer T, Moskovits M, Murakoshi K, Nam JM, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlucker S, Li-Lin T, Thomas KG, Tian ZQ, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B, Liz-Marzan LM (2019) Present and future of surface enhanced Raman scattering. ACS Nano

  19. Chen R, Shi H, Meng X, Su Y, Wang H, He Y (2019) Dual-Amplification Strategy-Based SERS Chip for sensitive and reproducible detection of DNA methyltransferase activity in human serum. Anal Chem 91:3597–3603

    Article  CAS  PubMed  Google Scholar 

  20. Tian L, Su M, Yu F, Xu Y, Li X, Li L, Liu H, Tan W (2018) Liquid-state quantitative SERS analyzer on self-ordered metal liquid-like plasmonic arrays. Nat Commun 9:3642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Lee PC, Meisel DJJ (1982) Adsorption and surface-enhanced Raman of dyes on silver and god sols. J Phys Chem 86:3391–3395

    Article  CAS  Google Scholar 

  22. Gong X, Tang M, Gong Z, Qiu Z, Wang D, Fan M (2019) Screening pesticide residues on fruit peels using portable Raman spectrometer combined with adhesive tape sampling. Food Chem 295:254–258

    Article  CAS  PubMed  Google Scholar 

  23. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707 [In English]

    Article  CAS  PubMed  Google Scholar 

  24. Cui Y, Ren B, Yao JL, Gu RA, Tian ZQ (2006) Synthesis of AgcoreAushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy. J Phys Chem B 110:4002–4006 [In eng]

    Article  CAS  PubMed  Google Scholar 

  25. Liou P, Nayigiziki FX, Kong F, Mustapha A, Lin M (2017) Cellulose nanofibers coated with silver nanoparticles as a SERS platform for detection of pesticides in apples. Carbohydr Polym 157:643–650

    Article  CAS  PubMed  Google Scholar 

  26. Liu B, Gong H, Wang Y, Zhang X, Li P, Qiu Y, Wang L, Hua X, Guo Y, Wang M, Liu F, Liu X, Zhang C (2018) A gold immunochromatographic assay for simultaneous detection of parathion and triazophos in agricultural products. Anal Methods 10:422–428

    Article  CAS  Google Scholar 

  27. Sun J, Gong L, Lu Y, Wang D, Gong Z, Fan M (2018) Dual functional PDMS sponge SERS substrate for the on-site detection of pesticides both on fruit surfaces and in juice. Analyst 143:2689–2695

    Article  CAS  PubMed  Google Scholar 

  28. Li XZ, Zhang S, Yu Z, Yang TY (2014) Surface-enhanced Raman spectroscopic analysis of phorate and fenthion pesticide in apple skin using silver nanoparticles. Appl Spectrosc 68:483–487 [In English]

    Article  CAS  PubMed  Google Scholar 

  29. Fan M, Lai F-J, Chou H-L, Lu W-T, Hwang B-J, Brolo AG (2013) Surface-enhanced Raman scattering (SERS) from Au:Ag bimetallic nanoparticles: the effect of the molecular probe. Chem Sci 4:509–515

    Article  CAS  Google Scholar 

  30. Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116:6755–6759

    Article  CAS  Google Scholar 

  31. Grady NK, Halas NJ, Nordlander P (2004) Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles. Chem Phys Lett 399:167–171

    Article  CAS  Google Scholar 

  32. Ruan F, Zhang S, Li Z, Yang Z, Wu D, Ren B, Xu H (2010) Near-field coupling and SERS effects of palladium nanoparticle dimers. Chin Sci Bull 55:2930–2936

    Article  CAS  Google Scholar 

  33. Li Y, Shi Z, Radauer-Preiml I, Andosch A, Casals E, Luetz-Meindl U, Cobaleda M, Lin Z, Jaberi-Douraki M, Italiani P, Horejs-Hoeck J, Himly M, Monteiro-Riviere NA, Duschl A, Puntes VF, Boraschi D (2017) Bacterial endotoxin (lipopolysaccharide) binds to the surface of gold nanoparticles, interferes with biocorona formation and induces human monocyte inflammatory activation. Nanotoxicology 11:1157–1175

    Article  CAS  PubMed  Google Scholar 

  34. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389:827–829

    Article  CAS  Google Scholar 

  35. Chen D, Zhu X, Huang J, Wang G, Zhao Y, Chen F, Wei J, Song Z, Zhao Y (2018) Polydopamine@gold nanowaxberry enabling improved SERS sensing of pesticides, pollutants, and explosives in complex samples. Anal Chem 90:9048–9054

    Article  CAS  PubMed  Google Scholar 

  36. Alsammarraie FK, Lin M, Mustapha A, Lin H, Chen X, Chen Y, Wang H, Huang M (2018) Rapid determination of thiabendazole in juice by SERS coupled with novel gold nanosubstrates. Food Chem 259:219–225

    Article  CAS  PubMed  Google Scholar 

  37. Sun H, Liu H, Wu Y (2017) A green, reusable SERS film with high sensitivity for in-situ detection of thiram in apple juice. Appl Surf Sci 416:704–709

    Article  CAS  Google Scholar 

  38. Shalini Devi KS, Anusha N, Raja S, Senthil KA (2018) A new Strategy for direct electrochemical sensing of a organophosphorus pesticide, triazophos, using a coomassie brilliant-blue dye surface-confined carbon-black-nanoparticle-modified electrode. ACS Appl Nano Mater 1:4110–4119

    Article  CAS  Google Scholar 

  39. Bhamore JR, Ganguly P, Kailasa SK (2016) Molecular assembly of 3-mercaptopropinonic acid and guanidine acetic acid on silver nanoparticles for selective colorimetric detection of triazophos in water and food samples. Sensors Actuators B Chem 233:486–495

    Article  CAS  Google Scholar 

  40. Hong SH, She YX, Cao XL, Wang M, He YH, Zheng LF, Wang SS, Abd El-Aty AM, Hacimuftuoglu A, Yan MM, Wang J (2019) A novel CdSe/ZnS quantum dots fluorescence assay based on molecularly imprinted sensitive membranes for determination of triazophos residues in cabbage and apple. Front Chem 7:7 [In English]

    Article  CAS  Google Scholar 

  41. Li H, Xie T, Ye L, Wang Y, Xie C (2017) Core-shell magnetic molecularly imprinted polymer nanoparticles for the extraction of triazophos residues from vegetables. Microchim Acta 184:1011–1019

    Article  CAS  Google Scholar 

  42. Yang Y, Cheng J, Wang B, Guo Y, Dong X, Zhao J (2019) An amino-modified metal-organic framework (type UiO-66-NH2) loaded with cadmium(II) and lead(II) ions for simultaneous electrochemical immunosensing of triazophos and thiacloprid. Mikrochim Acta 186:101

    Article  PubMed  CAS  Google Scholar 

  43. Du P, Jin M, Zhang C, Chen G, Cui X, Zhang Y, Zhang Y, Zou P, Jiang Z, Cao X, She Y, Jin F, Wang J (2018) Highly sensitive detection of triazophos pesticide using a novel bio-bar-code amplification competitive immunoassay in a micro well plate-based platform. Sensors Actuators B Chem 256:457–464

    Article  CAS  Google Scholar 

  44. Cecchini MP, Turek VA, Paget J, Kornyshev AA, Edel JB (2013) Self-assembled nanoparticle arrays for multiphase trace analyte detection. Nat Mater 12:165–171

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The author would like to thank for the financial supports of the National Natural Science Foundation of China (Grant Nos. 21677117, 21777131), Open Fund from Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University, China), and research on water pollution control and remediation technology of black and malodorous urban river (2018SZDZX0026) supported by Sichuan Science and Technology Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meikun Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1747 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Huang, Y., Liu, J. et al. Unsupported liquid-state platform for SERS-based determination of triazophos. Microchim Acta 187, 502 (2020). https://doi.org/10.1007/s00604-020-04474-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04474-6

Keywords

Navigation