Skip to main content
Log in

Electrochemiluminescence immunoassay of human chorionic gonadotropin using silver carbon quantum dots and functionalized polymer nanospheres

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A composite, reduced graphene oxide (rGO) doped with silver nanoparticles (Ag NPs), was prepared by using binary reductants of sodium citrate and hydrazine hydrate. Carbon quantum dots (CQDs) synthesized by papaya peel combined with silver ions to form a CQDs-loaded silver nanoparticle (AgCQDs) nanocomposite. Polymer nanospheres (PNS) were generated via the infinite coordination polymer of ferrocene dicarboxylic acid and employed as carriers to load AgCQDs. The prepared AgCQDs@PNS–PEI has good biocompatibility and electrical conductivity and can be used as a matrix for the immobilization of a secondary antibody (Ab2). A sandwich-type electrochemiluminescence (ECL) immunosensor using AgCQDs@PNS–PEI nanocomposite as probe has been developed for the detection of human chorionic gonadotropin (HCG). The proposed immunosensor exhibits a linear range from 0.00100 to 500 mIU mL−1 and the detection limit is 0.33 μIU mL−1 (S/N = 3) under optimal conditions. The sensor exhibits excellent selectivity, good reproducibility, and high stability. These features demonstrate that the proposed method has promising potential for clinical protein detection and displays a new strategy to fabricate an immunosensor.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Roushani M, Valipour A, Valipour M (2016) Layer-by-layer assembly of gold nanoparticles and cysteamine on gold electrode for immunosensing of human chorionic gonadotropin at picogram levels. Mat Sci Eng C-Mater 61:344–350

    CAS  Google Scholar 

  2. Tan F, Yan F, Ju H (2007) Sensitive reagentless electrochemical immunosensor based on an ormosil sol-gel membrane for human chorionic gonadotrophin. Biosens Bioelectron 22:2945–2951

    CAS  PubMed  Google Scholar 

  3. Zhang Z, Xu G, Xie L, Guan Y (2019) Colorimetric immunoassay for human chorionic gonadotropin by using peroxidase-mimicking MnO2 nanorods immobilized in microplate wells. Microchim Acta 186:581

    Google Scholar 

  4. Roushani M, Valipour A (2016) Voltammetric immunosensor for human chorionic gonadotropin using a glassy carbon electrode modified with silver nanoparticles and a nanocomposite composed of graphene, chitosan and ionic liquid, and using riboflavin as a redox probe. Microchim Acta 183:845–853

    CAS  Google Scholar 

  5. Xia N, Wang X, Liu L (2016) A graphene oxide-based fluorescent method for the detection of human chorionic gonadotropin. Sensors 16:1699

    Google Scholar 

  6. Wen G, Liang X, Liu Q, Liang A, Jiang Z (2016) A novel nanocatalytic SERS detection of trace human chorionic gonadotropin using labeled-free Vitoria blue 4R as molecular probe. Biosens Bioelectron 85:450–456

    CAS  PubMed  Google Scholar 

  7. Su J, Zhou Z, Li H, Liu S (2014) Quantitative detection of human chorionic gonadotropin antigen via immunogold chromatographic test strips. Anal Methods 6:450–455

    CAS  Google Scholar 

  8. Lei J, Jing T, Zhou T, Zhou Y, Wu W, Mei S, Zhou Y (2014) A simple and sensitive immunoassay for the determination of human chorionic gonadotropin by grapheme-based chemiluminescence resonance energy transfer. Biosens Bioelectron 54:72–77

    CAS  PubMed  Google Scholar 

  9. Yan X, Huang Z, He M, Liao X, Zhang C, Yin G, Gu J (2012) Detection of HCG-antigen based on enhanced photoluminescence of hierarchical ZnO arrays. Colloids Surf B 89:86–92

    CAS  Google Scholar 

  10. Zhang Q, Liu Y, Nie Y, Ma Q, Zhao B (2019) Surface plasmon coupling electrochemiluminescence assay based on the use of AuNP@C3N4QD@mSiO2 for the determination of the Shiga toxin-producing Escherichia coli (STEC) gene. Microchim Acta 186:656

    Google Scholar 

  11. Zhao G, Wang Y, Li X, Yue Q, Dong X, Du B, Cao W, Wei Q (2019) Dual-quenching electrochemiluminescence strategy based on three-dimensional metal−organic frameworks for ultrasensitive detection of amyloid-β. Anal Chem 91:1989–1996

    CAS  Google Scholar 

  12. Xua L, Zhang W, Shang L, Ma R, Jia L, Jia W, Wang H, Niu L (2018) Perylenetetracarboxylic acid and carbon quantum dots assembled synergistic electrochemiluminescence nanomaterial for ultra-sensitive carcinoembryonic antigen detection. Biosens Bioelectron 103:6–11

    Google Scholar 

  13. Xu Y, Liu J, Gao C, Wang E (2014) Applications of carbon quantum dots in electrochemiluminescence: a mini review. Electrochem Commun 48:151–154

    CAS  Google Scholar 

  14. Jiang X, Qin D, Mo G, Feng J, Yu C, Mo W, Deng B (2019) Ginkgo leaf-based synthesis of nitrogen-doped carbon quantum dots for highly sensitive detection of salazosulfapyridine in mouse plasma. J Pharm Biomed Anal 164:514–519

    CAS  Google Scholar 

  15. Qin D, Jiang X, Mo G, Feng J, Yu C, Deng B (2019) A novel carbon quantum dots signal amplification strategy coupled with sandwich electrochemiluminescence immunosensor for the detection of CA15-3 in human serum. ACS Sensors 4:504–512

    CAS  Google Scholar 

  16. Mo G, He X, Zhou C, Ya D, Feng J, Yu C, Deng B (2019) A novel ECL sensor based on a boronate affinity molecular imprinting technique and functionalized SiO2@CQDs/AuNPs/MPBA nanocomposites for sensitive determination of alpha-fetoprotein. Biosens Bioelectron 126:558–564

    CAS  Google Scholar 

  17. Jiao X, Li L, Qin S, Zhang Y, Huang K, Xu L (2019) The synthesis of fluorescent carbon dots from mango peel and their multiple applications. Colloid Surf A 577:306–314

    CAS  Google Scholar 

  18. Mo G, He X, Zhou C, Ya D, Feng J, Yu C, Deng B (2018) Sensitive detection of hydroquinone based on electrochemiluminescence energy transfer between the exited ZnSe quantum dots and benzoquinone. Sensors Actuators B Chem 266:784–792

    CAS  Google Scholar 

  19. Zhao M, Bai L, Cheng W, Duan X, Wu H, Ding S (2019) Monolayer rubrene functionalized graphene-based eletrochemiluminescence biosensor for serum cystatin C detection with immunorecognition-induced 3D DNA machine. Biosens Bioelectron 15:126–134

    Google Scholar 

  20. Ahmad R, Griffete N, Lamouri A, Felidj N, Chehimi M, Mangeney C (2015) Nanocomposites of gold nanoparticles@molecularly imprinted polymers: chemistry, processing, and applications in sensors. Chem Mater 27:5464–5478

    CAS  Google Scholar 

  21. Xia H, Li L, Yin Z, Hou X, Zhu J (2015) Biobar-coded gold nanoparticles and DNAzyme-based dual signal amplification strategy for ultrasensitive detection of protein by electrochemiluminescence. ACS Appl Mater Interfaces 7:696–703

    CAS  PubMed  Google Scholar 

  22. Lei J, Ju H (2012) Signal amplification using functional nanomaterials for biosensing. Chem Soc Rev 41:2122–2134

    CAS  PubMed  Google Scholar 

  23. Qiu Y, Zhou B, Yang X, Long D, Hao Y, Yang P (2017) Novel single-cell analysis platform based on a solid-state ZincCo adsorbed carbon quantum dots electrochemiluminescence probe for the evaluation of CD44 expression on breast cancer cells. ACS Appl Mater Interfaces 9:16848–16856

    CAS  PubMed  Google Scholar 

  24. Yan Q, Yang Y, Tan Z, Liu Q, Liu H, Wang P, Chen L, Zhang D, Li Y, Dong Y (2018) A label-free electrochemical immunosensor based on the novel signal amplification system of AuPdCu ternary nanoparticles functionalized polymer nanospheres. Biosens Bioelectron 103:151–157

    CAS  PubMed  Google Scholar 

  25. Ma L, Yuan R, Chai Y, Chen S, Ling S (2009) Amperometric hydrogen peroxide biosensor based on covalently immobilizing thionine as a mediator. Bioprocess Biosyst Eng 32:537–544

    CAS  PubMed  Google Scholar 

  26. Yao H, Li N, Xu S, Xu J, Zhu J, Chen H (2005) Electrochemical study of a new methylene blue/silicon oxide nanocomposition mediator and its application for stable biosensor of hydrogen peroxide. Biosens Bioelectron 21:372–377

    CAS  PubMed  Google Scholar 

  27. Cao X, Xu H, Ding S, Ye Y, Ge X, Yu L (2016) Electrochemical determination of sulfide in fruits using alizarin-reduced graphene oxide nanosheets modified electrode. Food Chem 194:1224–1229

    CAS  PubMed  Google Scholar 

  28. Qiu J, Zhou W, Guo J, Wang R, Liang R (2009) Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose. Anal Biochem 385:264–269

    CAS  PubMed  Google Scholar 

  29. Zhao X, Liao S, Wang L, Liu Q, Chen X (2019) Facile green and one-pot synthesis of purple perilla derived carbon quantum dot as a fluorescent sensor for silver ion. Talanta 201:1–8

    CAS  PubMed  Google Scholar 

  30. Yousefi S, Saraji M (2019) Developing a fluorometric aptasensor based on carbon quantum dots and silver nanoparticles for the detection of adenosine. Microchem J 148:169–176

    CAS  Google Scholar 

  31. Zhang B, Liu B, Chen G, Tang D (2015) Redox and catalysis ‘all-in-one’ infinite coordination polymer for electrochemical immunosensor of tumor markers. Biosens Bioelectron 64:6–12

    CAS  PubMed  Google Scholar 

  32. Yang Y, Liu Q, Liu Y, Cui J, Liu H, Wang P, Li Y, Chen L, Zhao Z, Dong Y (2017) A novel label-free electrochemical immunosensor based on functionalized nitrogen-doped graphene quantum dots for carcinoembryonic antigen detection. Biosens Bioelectron 90:31–38

    CAS  PubMed  Google Scholar 

  33. Han L, Liu C, Dong S, Du C, Zhang X, Li L, Wei Y (2017) Enhanced conductivity of rGO/Ag NPs composites for electrochemical immunoassay of prostate-specific antigen. Biosens Bioelectron 87:466–472

    CAS  Google Scholar 

  34. Wang Z, Zheng C, Li Q, Ding S (2014) Electrochemiluminescence of a nanoAg–carbon nanodot composite and its application to detect sulfide ions. Analyst 139:1751–1755

    CAS  Google Scholar 

  35. Pastoriza-Santos I, Liz-Marzan LM (2002) Synthesis of silver nanoprisms in DMF. Nano Lett 2:903–905

    CAS  Google Scholar 

  36. Zhang Y, Pan Q, Chai G, Liang M, Dong G, Zhang Q, Qiu J (2013) Synthesis and luminescence mechanism of multicolor-​emitting g-​C3N4 nanopowders by low temperature thermal condensation of melamine. Sci Rep 3:1943

    PubMed  PubMed Central  Google Scholar 

  37. Pan D, Zhang J, Li Z, Wu C, Yan X, Wu M (2010) Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles. Chem Commun 46:3681–3683

    CAS  Google Scholar 

  38. Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22:734–738

    Google Scholar 

  39. Zheng L, Chi Y, Dong Y, Lin J, Wang B (2009) Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc 131:4564–4565

    CAS  Google Scholar 

  40. Wu L, Wang J, Ren J, Lia W, Qu X (2013) Highly sensitive electrochemiluminescent cytosensing using carbon nanodot@Ag hybrid material and graphene for dual signal amplification. Chem Commun 49:5675–5677

    CAS  Google Scholar 

  41. Wang L, Liu D, Sun Y, Su J, Jin B, Geng L, Song Y, Huang X, Yang M (2018) Signal-on electrochemiluminescence of self-ordered molybdenum oxynitride nanotube arrays for label-free cytosensing. Anal Chem 90:10858–10864

    CAS  PubMed  Google Scholar 

  42. Cao Y, Mo G, Feng J, He X, Tang L, Yu C, Deng B (2018) Based on ZnSe quantum dots labeling and single particle mode ICP-MS coupled with sandwich magnetic immunoassay for the detection of carcinoembryonic antigen in human serum. Anal Chim Acta 1028:22–31

    CAS  PubMed  Google Scholar 

  43. Xia N, Chen Z, Liu Y, Ren H, Liu L (2017) Peptide aptamer-based biosensor for the detection of human chorionic gonadotropin by converting silver nanoparticles-based colorimetric assay into sensitive electrochemical analysis. Sensors Actuators B Chem 243:784–791

    CAS  Google Scholar 

  44. Tao M, Li X, Wu Z, Wang M, Mei H, Yang Y (2011) The preparation of label-free electrochemical immunosensor based on the Pt–Au alloy nanotube array for detection of human chorionic gonadotrophin. Clin Chim Acta 412:550–555

    CAS  PubMed  Google Scholar 

  45. Chen X, Li J, Jiang D, Li T, Liu X, Zhuang G (2013) A highly sensitive electrochemiluminescence immunoassay for detecting human embryonic human chorionic gonadotropin in spent embryo culture media during IVF-ET cycle. J Assist Reprod Genet 30:377–382

    Google Scholar 

  46. Guo Y, Zhou Y, Xiong S, Zeng L, Huang X, Leng Y, Xiong Y (2020) Natural enzyme-free colorimetric immunoassay for human chorionic gonadotropin detection based on the Ag+-triggered catalytic activity of cetyltrimethylammonium bromide-coated gold nanoparticles. Sensors Actuators B Chem 305:127439

    CAS  Google Scholar 

  47. Mao L, Yuan R, Chai Y, Zhuo Y, Yang X (2010) A new electrochemiluminescence immunosensor based on Ru(bpy)32+-doped TiO2 nanoparticles labeling for ultrasensitive detection of human chorionic gonadotrophin. Sensors Actuators B Chem 149:226–232

    CAS  Google Scholar 

  48. Zhang A, Guo W, Ke H, Zhang X, Zhang H, Huang C, Yang D, Jia N, Cui D (2018) Sandwich-format ECL immunosensor based on Au star@BSA-luminol nanocomposites for determination of human chorionic gonadotropin. Biosens Bioelectron 101:219–226

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Guilin Fifth People’s Hospital (Guilin, China) for providing the blood samples.

Funding

This work was financially supported by the National Natural Science Foundation of China (21765004) and by the Guangxi Science Foundation of China (2019GXNSFAA245076). This work also received research fund from the State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University) (CMEMR2018-C18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biyang Deng.

Ethics declarations

All components of the experiments are approved by Guangxi Normal University Animal Ethics Committee.

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1533 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, D., Jiang, X., Mo, G. et al. Electrochemiluminescence immunoassay of human chorionic gonadotropin using silver carbon quantum dots and functionalized polymer nanospheres. Microchim Acta 187, 482 (2020). https://doi.org/10.1007/s00604-020-04450-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04450-0

Keywords

Navigation