Skip to main content

Advertisement

Log in

Nanozymes in electrochemical affinity biosensing

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Over the past decade, artificial nanomaterials that exhibit properties similar to those of enzymes are gaining attraction in electrochemical biosensing as highly stable and low-cost alternatives to enzymes. This review article discusses the main features of the various nanomaterials (metal oxide, metal, and carbon-based materials) explored so far to mimic different kinds of enzymes. The unprecedented opportunities imparted by these functional nanomaterials or their nanohybrids, mostly providing peroxidase-like activity, in electrochemical affinity biosensing are critically discussed mainly in connection with their use as catalytic labels or electrode surface modifiers by highlighting representative strategies reported in the past 5 years with application in the food, environmental, and biomedical fields. Apart from outlining the pros and cons of nanomaterial-based enzyme mimetics arising from the impressive development they have experienced over the last few years, current challenges and future directions for achieving their widespread use and exploiting their full potential in the development of electrochemical biosensors are discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang Q, Wei H, Zhang Z, Wang E, Dong S (2018) Nanozyme: an emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trends Anal Chem 105:218–224

    Article  CAS  Google Scholar 

  2. Shin HY, Park TJ, Kim MI (2015) Recent research trends and future prospects in nanozymes. J Nanomater 756278:11. https://doi.org/10.1155/2015/756278

    Article  Google Scholar 

  3. Wang X, Qin L, Zhou M, Lou Z, Wei H (2018) Nanozyme sensor arrays for detecting versatile analytes from small molecules to proteins and cells. Anal Chem 90:11696–11702

    Article  CAS  Google Scholar 

  4. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48:1004–1076

    Article  CAS  Google Scholar 

  5. Zhang B, Zhao M, Qi Y, Tian R, Carter BB, Zou H (2019) The intrinsic enzyme activities of the classic polyoxometalates. Sci Rep 9:14832. https://doi.org/10.1038/s41598-019-50539-9

    Article  CAS  Google Scholar 

  6. Zhang X, Wu D, Zhou X, Yu Y, Liu J, Hu N et al (2019) Recent progress on the construction of nanozymes-based biosensors and their applications to food safety assay. TrAC Trends Anal Chem 121:115668. https://doi.org/10.1016/j.trac.2019.115668

    Article  CAS  Google Scholar 

  7. Singh S (2019) Nanomaterials exhibiting enzyme-like properties (nanozymes): current advances and future perspectives. Front Chem 7:46. https://doi.org/10.3389/fchem.2019.00046

    Article  CAS  Google Scholar 

  8. Jiang B, Fang L, Wu K, Yan X, Fan K (2020) Ferritins as natural and artificial nanozymes for theranostics. Theranostics 10:687–706

    Article  CAS  Google Scholar 

  9. Niu X, Cheng N, Ruan X, Du D, Lin Y (2020) Review—Nanozyme-based immunosensors and immunoassays: recent developments and future trends. J Electrochem Soc 167:037508. https://doi.org/10.1149/2.0082003JES

    Article  CAS  Google Scholar 

  10. Nasir M, Nawaz MH, Latif U, Yaqub M, Hayat A, Rahim A (2017) An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchim Acta 184:323–342

    Article  CAS  Google Scholar 

  11. Huang Y, Ren J, Qu X (2019) Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev 119:4357–4412

    Article  CAS  Google Scholar 

  12. Liang H, Lin F, Zhang Z, Liu B, Jiang S, Yuan Q, Liu J (2017) Multi-copper laccase mimicking nanozymes with nucleotides as ligands. ACS Appl Mater Interfaces 9:1352–1360

    Article  CAS  Google Scholar 

  13. Liu J (2019) Special topic: nanozyme-based analysis and testing. J Anal Test 3:189–190

  14. Liu B, Liu J (2017) Surface modification of nanozymes. Nano Res 10:1125–1148

    Article  CAS  Google Scholar 

  15. Chatterjee B, Das SJ, Anand A, Sharma TK (2020) Nanozymes and aptamer-based biosensing. Mater Sci Technol 3:127–135

  16. Bazin I, Tria SA, Hayat A, Marty J-L (2017) New biorecognition molecules in biosensors for the detection of toxins. Biosens Bioelectron 87:285–298

    Article  CAS  Google Scholar 

  17. Mahmudunnabi RG, FarhanA FZ, Kashanineja N, Firoz SH, Shim Y-B, Shiddiky MJA (2020) Nanozymes-based electrochemical biosensors for disease biomarker detection. Analyst in press. https://doi.org/10.1039/D0AN00558D

  18. Vázquez-González M, Torrente-Rodríguez RM, Kozell A, Liao W-C, Cecconello A, Campuzano S, Pingarrón JM, Willner I (2017) Mimicking peroxidase activities with Prussian blue nanoparticles and their cyanometalate structural analogues. Nano Lett 17:4958–4496

    Article  Google Scholar 

  19. Bhattacharjee R, Tanaka S, Moriam S, Kamal M, Lin MJ, Alshehri SM et al (2018) Porous nanozymes: peroxidase-mimetic activity of mesoporous iron oxide for colorimetric and electrochemical detection of global DNA methylation. J Mater Chem B 6:4783–4791

    Article  CAS  Google Scholar 

  20. Koo KM, Dey S, Trau M (2018) A sample-to-targeted gene analysis biochip for nanofluidic manipulation of solid-phase circulating tumor nucleic acid amplification in liquid biopsies. ACS Sens 3:2597–2603

    Article  CAS  Google Scholar 

  21. Tian L, Qi J, Qian K, Oderinde O, Cai Y, Yao C, Song W, Wang Y (2018) An ultrasensitive electrochemical cytosensor based on the magnetic field assisted binanozymes synergistic catalysis of Fe3O4 nanozyme and reduced graphene oxide/molybdenum disulfide nanozyme. Sensors Actuators B Chem 260:676–684

    Article  CAS  Google Scholar 

  22. Zhang L, Xie X, Yuan Y, Chai Y, Yuan R (2019) FeS2-AuNPs nanocomposite as mimicking enzyme for constructing signal-off sandwich-type electrochemical immunosensor based on electroactive nickel hexacyanoferrate as matrix. Electroanalysis 31:1019–1025

    Article  CAS  Google Scholar 

  23. Golchin J, Golchin K, Alidadian N, Ghaderi S, Eslamkhah S, Eslamkhah M, Akbarzadeh A (2017) Nanozyme applications in biology and medicine: an overview. Artif Cells Nanomed Biotechnol 45:1–8. https://doi.org/10.1080/21691401.2017.1313268

    Article  CAS  Google Scholar 

  24. Wei Y, Li Y, Li N, Zhang Y, Yan T, Man H, Wei Q (2016) Sandwich-type electrochemical immunosensor for the detection of AFP based on Pd octahedral and APTES-M-CeO2-GS as signal labels. Biosens Bioelectron 79:482–487

    Article  CAS  Google Scholar 

  25. Das R, Dhiman A, Kapil A, Bansal V, Sharma TK (2019) Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold nanozyme. Anal Bioanal Chem 411:1229–1238

    Article  CAS  Google Scholar 

  26. Drozd M, Pietrzak M, Parzuchowski P, Mazurkiewicz-Pawlicka M, Malinowska E (2015) Peroxidase-like activity of gold nanoparticles stabilized by hyperbranched polyglycidol derivatives over a wide pH range. Nanotechnology 26:495101. https://doi.org/10.1088/0957-4484/26/49/495101

    Article  CAS  Google Scholar 

  27. Kong J, Yu X, Hu W, Hu Q, Shui S, Li L, Han X, Xie H, Zhang X, Wang T (2015) A biomimetic enzyme modified electrode for H2O2 highly sensitive detection. Analyst 140:7792–7798

    Article  CAS  Google Scholar 

  28. Wang C, Liu C, Luo J, Tian Y, Zhou N (2016) Direct electrochemical detection of kanamycin based on peroxidase-like activity of gold nanoparticles. Anal Chim Acta 936:75–82

    Article  CAS  Google Scholar 

  29. Zhao R-N, Feng Z, Zhao Y-N, Jia L-P, Ma R-N, Zhang W (2019) A sensitive electrochemical aptasensor for mucin1 detection based on catalytic hairpin assembly coupled with PtPdNPs peroxidase-like activity. Talanta 200:503–510

    Article  CAS  Google Scholar 

  30. Ou D, Sun D, Lin X, Liang Z, Zhong Y, Chen Z (2019) A dual-aptamer-based biosensor for specific detection of breast cancer biomarker HER2 via flower-like nanozymes and DNA nanostructures. J Mater Chem B 7:3661–3669

    Article  CAS  Google Scholar 

  31. Proença CA, Baldo TA, Freitas TA, Materón EM, Wong A, Durán AA, Melendez ME, Zambrano G, Faria RC (2019) Novel enzyme-free immunomagnetic microfluidic device based on Co0.25Zn0.75Fe2O4 for cancer biomarker detection. Anal Chim Acta 1071:59–69

    Article  Google Scholar 

  32. Liu Y, He G, Liu H, Yin H, Gao F, Chen J, Zhang S, Yang B (2020) Electrochemical immunosensor based on AuBP@Pt nanostructure and AuPd-PDA nanozyme for ultrasensitive detection of APOE4. RSC Adv 10:7912–7917

    Article  CAS  Google Scholar 

  33. Zheng X, Zhu Q, Song H, Zhao X, Yi T, Chen H, Chen X (2015) In situ synthesis of self-assembled three-dimensional graphene–magnetic palladium nanohybrids with dual-enzyme activity through one-pot strategy and its application in glucose probe. ACS Appl Mater Interfaces 7:3480–3491

    Article  CAS  Google Scholar 

  34. Zhang Y, Li J, Wang Z, Ma H, Wu D, Cheng Q, Wei Q (2016) Label-free electrochemical immunosensor based on enhanced signal amplification between Au@Pd and CoFe2O4/graphene nanohybrid. Sci Rep 6:23391. https://doi.org/10.1038/srep23391

    Article  CAS  Google Scholar 

  35. Zhu F, Zhao G, Dou W (2018) Electrochemical sandwich immunoassay for Escherichia coli O157:H7 based on the use of magnetic nanoparticles and graphene functionalized with electrocatalytically active Au@Ptcore/shell nanoparticles. Mikrochim Acta 185:455. https://doi.org/10.1007/s00604-018-2984-2

    Article  CAS  Google Scholar 

  36. Ma Z, Qiu Y, Yang H, Huang Y, Liu J, Lu Y, Zhang C, Hu P Effective synergistic effect of dipeptide-polyoxometalate-graphene oxide ternary hybrid materials on peroxidase-like mimics with enhanced performance. ACS Appl Mater Interfaces 7:22036–22045. https://doi.org/10.1021/acsami.5b07046

  37. Serafín V, Valverde A, Garranzo-Asensio M, Barderas R, Campuzano S, Yáñez-Sedeño P, Pingarrón JM (2019) Simultaneous amperometric immunosensing of the metastasis-related biomarkers IL-13Rα2 and CDH-17 by using grafted screen-printed electrodes and a composite prepared from quantum dots and carbon nanotubes for signal amplification. Microchim Acta 186:411. https://doi.org/10.1007/s00604-019-3531-5

    Article  CAS  Google Scholar 

  38. Serafín V, Valverde A, Martínez-García G, Martínez-Periñán E, Comba F, Garranzo-Asensio M, Barderas R, Yáñez-Sedeño P, Campuzano S, Pingarrón JM (2019) Graphene quantum dots-functionalized multi-walled carbon nanotubes as nanocarriers in electrochemical immunosensing. Determination of IL-13 receptor α2 in colorectal cells and tumor tissues with different metastatic potential. Sensors Actuators B Chem 284:711–722

    Article  Google Scholar 

  39. Savas S, Altintas Z (2019) Graphene quantum dots as nanozymes for electrochemical sensing of Yersinia enterocolitica in milk and human serum. Materials 12:2189. https://doi.org/10.3390/ma12132189

    Article  CAS  Google Scholar 

  40. Garg B, Bisht T (2016) Carbon nanodots as peroxidase nanozymes for biosensing. Molecules 21:1653. https://doi.org/10.3390/molecules21121653

    Article  CAS  Google Scholar 

  41. Menon SS, Chandran SV, Koyappayil A, Berchmans S (2018) Copper- based metal-organic frameworks as peroxidase mimics leading to sensitive H2O2 and glucose detection. ChemistrySelect 3:8319–8324

  42. Zhao F, Sun T, Geng F, Chen P, Gao Y (2019) Metal-organic frameworks-based electrochemical sensors and biosensors. Int J Electrochem Sci 14:5287–5304

    Article  CAS  Google Scholar 

  43. Li Y, Yu C, Yang B, Liu Z, Xia P, Wang Q (2018) Target-catalyzed hairpin assembly and metalorganic frameworks mediated nonenzymatic coreaction for multiple signal amplification detection of miR-122 in human serum. Biosens Bioelectron 102:307–315

    Article  CAS  Google Scholar 

  44. Feng J, Wang H, Ma Z (2020) Ultrasensitive amperometric immunosensor for the prostate specific antigen by exploiting a Fenton reaction induced by a metal-organic framework nanocomposite of type Au/Fe-MOF with peroxidase mimicking activity. Mikrochim Acta 187:95. https://doi.org/10.1007/s00604-019-4075-4

    Article  CAS  Google Scholar 

  45. Cui L, Wu J, Li J, Ju H (2015) Electrochemical sensor for lead cation sensitized with a DNA functionalized porphyrinic metal−organic framework. Anal Chem 87:10635–10641

    Article  CAS  Google Scholar 

  46. Ling P, Lei J, Zhang L, Ju H (2005) Porphyrin-encapsulated metal−organic frameworks as mimetic catalysts for electrochemical DNA sensing via allosteric switch of hairpin DNA. Anal Chem 87:3957–3963

    Article  Google Scholar 

  47. Cai R, Yang D, Peng S, Chen X, Huang Y, Liu Y, Hou W, Yang SY, Liu Z, Tan W (2015) Single nanoparticle to 3D supercage: framing for an artificial enzyme system. J Am Chem Soc 137:13957–13963

    Article  CAS  Google Scholar 

  48. Jin LY, Dong YM, Wu XM, Cao GX, Wang GL (2015) Versatile and amplified biosensing through enzymatic cascade reaction by coupling alkaline phosphatase in situ generation of photoresponsive nanozyme. Anal Chem 87:10429–10436

    Article  CAS  Google Scholar 

  49. Li S, Liu X, Chai H, Huang Y (2018) Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes. TrAC Trends Anal Chem 105:391–403

    Article  CAS  Google Scholar 

  50. Huang L, Sun D-W, Pu H, Wei Q (2019) Development of nanozymes for food quality and safety detection: principles and recent applications. Compr Rev Food Sci Food Saf 18:1496–1513

    Article  Google Scholar 

  51. Wang W, Gunasekaran S (2020) Nanozymes-based biosensors for food quality and safety. TrAC-Trend Anal Chem 126:115841. https://doi.org/10.1016/j.trac.2020.115841

    Article  CAS  Google Scholar 

  52. Kou B, Yuan Y, Yuan R, Chai Y (2020) Electrochemical biomolecule detection based on the regeneration of high-efficiency cascade catalysis for bifunctional nanozymes. Chem Commun 56:2276–2279

    Article  CAS  Google Scholar 

  53. Sun D, Line X, Lu J, Wei P, Luo Z, Lu X et al (2019) DNA nanotetrahedron-assisted electrochemical aptasensor for cardiac troponin I detection based on the co-catalysis of hybrid nanozyme, natural enzyme and artificial DNAzyme. Biosens Bioelectron 142:111578. https://doi.org/10.1016/j.bios.2019.111578

    Article  CAS  Google Scholar 

  54. Shu J, Qiu Z, Wei Q, Zhuang J, Tang D (2015) Cobalt-porphyrin-platinum-functionalized reduced graphene oxide hybrid nanostructures: a novel peroxidase mimetic system for improved electrochemical immunoassay. Sci Rep 5:15113. https://doi.org/10.1038/srep15113

    Article  CAS  Google Scholar 

  55. Ningning L, Huang X, Sun D, Yu W, Tan W, Luo Z et al (2018) Dual-aptamer-based voltammetric biosensor for the Mycobacterium tuberculosis antigen MPT64 by using a gold electrode modified with a peroxidase loaded composite consisting of gold nanoparticles and a Zr(IV)/terephthalate metal-organic framework. Microchim Acta 105:543. https://doi.org/10.1007/s00604-018-3081-2

    Article  CAS  Google Scholar 

  56. Chang J, Wang X, Wang J, Li H, Li F (2019) Nucleic acid-functionalized metal−organic framework-based homogeneous electrochemical biosensor for simultaneous detection of multiple tumor biomarkers. Anal Chem 91:3604–3610

    Article  CAS  Google Scholar 

  57. Yang Y, Cheng J, Wang B, Guo Y, Dong X, Zhao J (2019) An amino-modified metal-organic framework (type UiO-66-NH2) loaded with cadmium(II) and lead(II) ions for simultaneous electrochemical immunosensing of triazophos and thiacloprid. Microchim Acta 186:101. https://doi.org/10.1007/s00604-018-3201-z

    Article  CAS  Google Scholar 

  58. Yan T, Zhu L, Ju H, Lei J (2018) DNA-walker-induced allosteric switch for tandem signal amplification with palladium nanoparticles/metal−organic framework tags in electrochemical biosensing. Anal Chem 90:14493–14499

    Article  CAS  Google Scholar 

  59. Tang Z, He J, Chen J, Niu Y, Zhao Y, Zhang Y (2018) A sensitive sandwich-type immunosensor for the detection of galectin-3 based on N-GNRs-Fe-MOFs@AuNPs nanocomposites and a novel AuPt-methylene blue nanorod. Biosens Bioelectron 101:253–259

    Article  CAS  Google Scholar 

  60. Zhou N, Su F, Guo C, He L, Jia Z, Wang M, Jia Q, Zhang Z, Lu S (2019) Two-dimensional oriented growth of Zn-MOF-on- Zr-MOF architecture: a highly sensitive and selective platform for detecting cancer markers. Biosens Bioelectron 123:51–58

    Article  CAS  Google Scholar 

Download references

Funding

The financial support of the PID2019-103899RB-I00 (Ministerio de Ciencia e Innovación) and RTI2018-096135-B-I00 (Ministerio de Ciencia, Innovación y Universidades) Research Projects and the TRANSNANOAVANSENS-CM Program from the Comunidad de Madrid (Grant S2018/NMT-4349) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Campuzano.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campuzano, S., Pedrero, M., Yáñez-Sedeño, P. et al. Nanozymes in electrochemical affinity biosensing. Microchim Acta 187, 423 (2020). https://doi.org/10.1007/s00604-020-04390-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04390-9

Keywords

Navigation