Skip to main content

Advertisement

Log in

Simultaneous electrochemical determination of dopamine and epinephrine using gold nanocrystals capped with graphene quantum dots in a silica network

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Gold nanocrystals (AuNCs) were synthesized by economical and green strategy in aqueous medium by using N[3(trimethoxysilyl)propyl]ethylenediamine (TMSPED) as both a reducing and stabilizing mediator to avoid the aggregation of gold nanocrystals. Then, the AuNCs were capped with graphene quantum dots (GQDs) using an ultrasonic method. The resulting nanocomposites of GQD-TMSPED-AuNCs were characterized by X-ray photoelectron, X-ray diffraction, Raman, UV-vis and FT-IR spectroscopies. The size and shape of the nanocomposites were confirmed by using transmission electron microscopy and atomic force microscopy. The GQD-TMSPED-AuNCs placed on a glassy carbon electrode enable simultaneous determination of dopamine (DA) and epinephrine (EP) with peak potentials at 0.21 and 0.30 V (vs. Ag/AgCl). The response is linear in the 5 nM – 2.1 μM (DA) and 10 nM – 4.0 μM (EP) concentration ranges, with detection limits of 5 and 10 nM, respectively. The sensor shows good selectivity toward DP and EP in the presence of other molecules, facilitating its rapid detection in practical applications.

Schematic representation of gold nanocrystals capped with graphene quantum dots in the modified electrodes for simultaneous detection of dopamine and epinephrine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lotharius J, Brundin P (2002) Pathogenesis of Parkinson's disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci 3:932–942

    Article  CAS  Google Scholar 

  2. Maas R, Wassenberg T, Lin JP, van de Warrenburg BPC, Willemsen M (2017) L-Dopa in dystonia: a modern perspective. Neurology 88(19):1865–1871

    Article  CAS  Google Scholar 

  3. Zheng JW, Yang Y, Tian SH, Chen J, Wilson FAW, Ma YY (2005) The dynamics of hippocampal sensory gating during the development of morphine dependence and withdrawal in rats. Neurosci Lett 382(1–2):164–168

    Article  CAS  Google Scholar 

  4. Cincotto FH, Canevari TC, Campos AM, Landers R, Machado SAS (2014) Simultaneous determination of epinephrine and dopamine by electrochemical reduction on the hybrid material SiO2/graphene oxide decorated with ag nanoparticles. Analyst 139:4634–4640

    Article  CAS  Google Scholar 

  5. Kang JZ, Yin XB, Yang XR, Wang EK (2005) Electrochemiluminescence quenching as an indirect method for detection of dopamine and epinephrine with capillary electrophoresis. Electrophoresis 26:1732–1736

    Article  CAS  Google Scholar 

  6. Carrera V, Sabater E, Vilanova E, Sogorb MA (2007) A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: application to the secretion of bovine chromaffin cell cultures. J Chromatogr B Analyt Technol Biomed Life Sci 847:88–94

    Article  CAS  Google Scholar 

  7. Wang Y, Chen Z-Z (2009) A novel poly(taurine) modified glassy carbon electrode for the simultaneous determination of epinephrine and dopamine. Colloids Surf B 74:322–327

    Article  CAS  Google Scholar 

  8. Sadeghi R, Karimi-Maleh H, Bahari A, Taghavi M (2013) A novel biosensor based on ZnO nanoparticle/1,3- dipropylimidazolium bromide ionic liquid-modified carbon paste electrode for square-wave voltammetric determination of epinephrine. Phys Chem Chem Phys 51:704–714

    CAS  Google Scholar 

  9. Tavakkoli N, Soltani N, Shahdost-fard F, Ramezani M, Salavati H, Jalali MR (2018) Simultaneous voltammetric sensing of acetaminophen, epinephrine and melatonin using a carbon paste electrode modified with zinc ferrite nanoparticles. Microchim Acta 185(10):479

    Article  Google Scholar 

  10. Khalilzadeh MA, Karimi-Maleh H, Gupta VK (2015) A nanostructure based electrochemical sensor for square wave Voltammetric determination of L-cysteine in the presence of high concentration of folic acid. Electroanal 27:1766–1773

    Article  CAS  Google Scholar 

  11. Shi J, Claussen JC, McLamore ES, Haque A, Jaroch D, Diggs AR, Calvo-Marzal P, Rickus JL, Porterfield DM (2011) A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors. Nanotechnology 22(35):355502 (1-10)

    Article  Google Scholar 

  12. Atta NF, Galal A, Abu-Attia FM, Azaba SM (2011) Simultaneous determination of paracetamol and neurotransmitters in biological fluids using a carbon paste sensor modified with gold nanoparticles. J Mater Chem 21:13015–13024

    Article  CAS  Google Scholar 

  13. Wang HS, Huang DQ, Liu RM (2004) Study on the electrochemical behavior of epinephrine at a poly(3-methylthiophene)-modified glassy carbon electrode. J Electroanal Chem 570:83–90

    Article  CAS  Google Scholar 

  14. Lu X, Li Y, Du J, Zhou X, Xue Z, Liu X, Wang Z (2011) A novel nanocomposites sensor for epinephrine detection in the presence of uric acids and ascorbic acids. Electrochim Acta 56:7261–7266

    Article  CAS  Google Scholar 

  15. Shi J, McLamoree ES, Porterfield DM (2013) Nanomaterial-based self-referencing microbiosensors for cell and tissue physiology research. Biosens Bioelectron 40:127–134

    Article  CAS  Google Scholar 

  16. Vinoth V, Wu JJ, Asiri AM, Anandan S (2017) Sonochemical synthesis of silver nanoparticles anchored reduced graphene oxide nanosheets for selective and sensitive detection of glutathione. Ultrason Sonochem 39:363–373

    Article  CAS  Google Scholar 

  17. Rajabzade H, Daneshgar P, Tazikeh E, Mehrabian RZE (2012) Functionalized carbon nanotubes with gold nanoparticles to fabricate a sensor for hydrogen peroxide determination. J Chem 9:2540–2549

    CAS  Google Scholar 

  18. Kou R, Shao YY, Wang DH, Engelhard MH, Kwak JHJ, Viswanathan V, Wang CM, Lin YH, Wang Y, Aksay IA, Liu J (2009) Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem Commun 11:954–957

    Article  CAS  Google Scholar 

  19. Vinoth V, Rozario TMD, Wu JJ, Anandan S, Ashokkumar M (2017) Graphene quantum dots anchored gold Nanorods for electrochemical detection of glutathione. ChemistrySelect 2:4744–4752

    Article  CAS  Google Scholar 

  20. Chang Y, Braun A, Deangelis A, Kaneshiro J, Gaillard N (2011) Effect of thermal treatment on the crystallographic, surface energetics, and photoelectrochemical properties of reactively cosputtered copper tungstate for water splitting. J Phys Chem C 115:25490–25495

    Article  CAS  Google Scholar 

  21. Wang X, Sun G, Li N, Chen P (2016) Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chem Soc Rev 45:2239–2262

    Article  CAS  Google Scholar 

  22. Gedanken A (2014) Using sonochemistry for the fabrication of nanomaterials. Ultrason Sonochem 11:47–55

    Article  Google Scholar 

  23. Byeon JH, Kim Y-W (2013) Ultrasound-assisted copper deposition on a polymer membrane and application for methanol steam reforming. Ultrason Sonochem 20:472–477

    Article  CAS  Google Scholar 

  24. Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, Lin X, Chen G (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50:4738–4743

    Article  CAS  Google Scholar 

  25. Valles C, Drummond C, Saadaoui H, Furtado CA, He M, Roubeau O, Ortolani L, Monthioux M, Penicaud A (2008) Solutions of negatively charged graphene sheets and ribbons. J Am Chem Soc 130:15802–15804

    Article  CAS  Google Scholar 

  26. Xue Q, Huang H, Wang L, Chen ZW, Wu MH, Li Z, Pan DY (2013) Nearly monodisperse graphene quantum dots fabricated by amine-assisted cutting and ultrafiltration. Nanoscale 5:12098–12103

    Article  CAS  Google Scholar 

  27. Deng L, Liu L, Zhu C, Li D, Dong S (2013) Hybrid gold nanocube@silica@graphene-quantum-dot superstructures: synthesis and specific cell surface protein imaging applications. Chem Commun 49:2503–2505

    Article  CAS  Google Scholar 

  28. Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, Teng KS, Luk CM, Zeng S, Hao J, Lau SP (2012) Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6:5102–5110

    Article  CAS  Google Scholar 

  29. Ju J, Chen W (2015) In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal Chem 87(3):1903–1910

    Article  CAS  Google Scholar 

  30. He GQ, Song Y, Liu K, Walter A, Chen S, Chen SW (2013) Oxygen reduction catalyzed by platinum nanoparticles supported on graphene quantum dots. ACS Catal 3:831–838

    Article  CAS  Google Scholar 

  31. Zaikovski V, Sorensen CM, Klabunde KJ (2003) Face-centered cubic and hexagonal closed-packed nanocrystal Superlattices of gold nanoparticles prepared by different methods. J Phys Chem B107:7441–7448

    Google Scholar 

  32. LCS F-F, DAC B, Filho OF, Banks CE (2014) Electroanalytical performance of a freestanding three dimensional graphene foam electrode. Electroanal 26:93–102

    Article  Google Scholar 

  33. Ito M, Kotaro Hatta K, Usui C, Arai H (2012) Urine catecholamine levels are not influenced by electro-convulsive therapy in depression or schizophrenia over the long term. Psychiat Clin Neuros 66:602–610

    Article  CAS  Google Scholar 

  34. Xu F, Gao MN, Wang L, Shi GY, Zhang W, Jin LT (2001) Sensitive determination of dopamine on poly(aminobenzoic acid) modified electrode and the application toward an experimental parkinsonian animal model. Talanta 55:329–336

    Article  CAS  Google Scholar 

  35. Grouzmann E, Tschopp O, Triponez F, Matter M, Bilz S, Brandle M (2015) Catecholamine metabolism in Paraganglioma and Pheochromocytoma: similar tumors in different sites? Plos One 10(5):e0125426

    Article  Google Scholar 

Download references

Acknowledgments

The research described herein was financially supported by the Department of Science and Technology, India under Nanomission scheme (SR/NM/NS-1024/2016). The authors V. Vinoth and H. Valdés gratefully acknowledge to Chile CONICYT/FONDECYT Post-doctoral project no. 3190256, for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Héctor Valdés or Sambandam Anandan.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 5045 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinoth, V., Natarajan, L.N., Mangalaraja, R.V. et al. Simultaneous electrochemical determination of dopamine and epinephrine using gold nanocrystals capped with graphene quantum dots in a silica network. Microchim Acta 186, 681 (2019). https://doi.org/10.1007/s00604-019-3779-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3779-9

Keywords

Navigation