Skip to main content
Log in

Preparation of a hydrophilic interaction liquid chromatography material by sequential electrostatic deposition of layers of polyethyleneimine and hyaluronic acid for enrichment of glycopeptides

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A hydrophilic interaction liquid chromatography (HILIC) material with application in glycoproteomics was obtained by sequential deposition of polyethyleneimine (PEI) and hyaluronic acid (HA) on a negatively charged substrate by means of electrostatic self-assembly. This kind of surface modification endows the material with excellent hydrophilicity and warrants efficient glycopeptides enrichment. The feasibility of this enrichment was verified by using dendritic mesoporous silica nanoparticles (DMSNs) and magnetic graphene oxide (MagG) as negatively charged substrates for PEI and HA adhesion. The two final products (DMSNs@PEI@HA and MagG@PEI@HA) exhibit high enrichment selectivity (molar ratios of IgG and BSA digests = 1:500 and 1:1000), sensitivity (detection limit, 2 fmol/μL), recovery (>90%) and enrichment capacity (300 mg/g). When using DMSNs@PEI@HA, 419 N-glycopeptides derived from 105 glycoproteins were identified. When using MagG@PEI@HA, 376 N-glycopeptides derived from 102 glycoproteins were identified, both from a 2 μL serum sample. This is better than by methods described in previous reports.

Schematic representation of hydrophilic modification of negatively charged nanomaterial substrates by electrostatic self-assembly techniques to obtain hydrophilic interaction liquid chromatography (HILIC) materials for enrichment of N-glycopeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hart GW, Copeland RJ (2010) Glycomics hits the big time. Cell 143(5):672–676

    Article  CAS  Google Scholar 

  2. Lowe JB (2001) Glycosylation, immunity, and autoimmunity. Cell 104(6):809–812

    Article  CAS  Google Scholar 

  3. Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126(5):855–867

    Article  CAS  Google Scholar 

  4. Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291(5512):2364–2369

    Article  CAS  Google Scholar 

  5. Dosekova E, Filip J, Bertok T, Both P, Kasak P, Tkac J (2017) Nanotechnology in Glycomics: applications in diagnostics, therapy, imaging, and separation processes. Med Res Rev 37(3):514–626

    Article  Google Scholar 

  6. Hu Y, Xia Q, Huang W, Hou X, Tian M (2017) Boronate-modified hollow molecularly imprinted polymers for selective enrichment of glycosides. Microchim Acta 185(1):46

    Article  Google Scholar 

  7. Liu CM, Li YM, Semenov M, Han C, Baeg GH, Tan Y, Zhang ZH, Lin XH, He X (2002) Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108(6):837–847

    Article  CAS  Google Scholar 

  8. Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5(11):845–856

    Article  CAS  Google Scholar 

  9. Jin S, Liu L, Zhou P (2018) Amorphous titania modified with boric acid for selective capture of glycoproteins. Microchim Acta 185(6):308

    Article  Google Scholar 

  10. Sun N, Wang J, Yao J, Chen H, Deng C (2019) Magnetite nanoparticles coated with mercaptosuccinic acid-modified mesoporous titania as a hydrophilic sorbent for glycopeptides and phosphopeptides prior to their quantitation by LC-MS/MS. Microchim Acta 186(3):159

    Article  Google Scholar 

  11. Wang J, Wang Z, Sun N, Deng C (2019) Immobilization of titanium dioxide/ions on magnetic microspheres for enhanced recognition and extraction of mono- and multi-phosphopeptides. Microchim Acta 186(4):236

    Article  Google Scholar 

  12. Zhang K, Hu D, Deng S, Han M, Wang X, Liu H, Liu Y, Xie M (2019) Phytic acid functionalized Fe3O4 nanoparticles loaded with Ti(IV) ions for phosphopeptide enrichment in mass spectrometric analysis. Microchim Acta 186(2):68

    Article  Google Scholar 

  13. Dominguez-Vega E, Tengattini S, Peintner C, van Angeren J, Temporini C, Haselberg R, Massolini G, Somsen GW (2018) High-resolution glycoform profiling of intact therapeutic proteins by hydrophilic interaction chromatography-mass spectrometry. Talanta 184:375–381

    Article  CAS  Google Scholar 

  14. Kozlik P, Goldman R, Sanda M (2018) Hydrophilic interaction liquid chromatography in the separation of glycopeptides and their isomers. Anal Bioanal Chem 410(20):5001–5008

    Article  CAS  Google Scholar 

  15. Bi CF, Zhao YR, Shen LJ, Zhang K, He XW, Chen LX, Zhang YK (2015) Click synthesis of hydrophilic maltose-functionalized Iron oxide magnetic nanoparticles based on dopamine anchors for highly selective enrichment of Glycopeptides. ACS Appl Mater Interfaces 7(44):24670–24678

    Article  CAS  Google Scholar 

  16. Feng XY, Deng CH, Gao MX, Yan GQ, Zhang XM (2018) Novel synthesis of glucose functionalized magnetic graphene hydrophilic nanocomposites via facile thiolation for high-efficient enrichment of glycopeptides. Talanta 179:377–385

    Article  CAS  Google Scholar 

  17. Shao WY, Liu JX, Yang KG, Liang Y, Weng YJ, Li SW, Liang Z, Zhang LH, Zhang YK (2016) Hydrogen-bond interaction assisted branched copolymer HILIC material for separation and N-glycopeptides enrichment. Talanta 158:361–367

    Article  CAS  Google Scholar 

  18. Li JN, Wang FJ, Wan H, Liu J, Liu ZY, Cheng K, Zou HF (2015) Magnetic nanoparticles coated with maltose-functionalized polyethyleneimine for highly efficient enrichment of N-glycopeptides. J Chromatogr A 1425:213–220

    Article  CAS  Google Scholar 

  19. Jin T, Xiong ZC, Zhu X, Mehio N, Chen YJ, Hu J, Zhang WB, Zou HF, Liu HL, Dai S (2015) Template-free synthesis of mesoporous polymers for highly selective enrichment of Glycopeptides. ACS Macro Lett 4(5):570–574

    Article  CAS  Google Scholar 

  20. Wang YL, Liang S, Chen BD, Guo FF, Yu SL, Tang YL (2013) Synergistic removal of Pb(II), cd(II) and humic acid by Fe3O4@mesoporous silica-graphene oxide composites. PLoS One 8(6):8

    Article  CAS  Google Scholar 

  21. Jiang B, Wu Q, Deng N, Chen YB, Zhang LH, Liang Z, Zhang YK (2016) Hydrophilic GO/Fe3O4/au/PEG nanocomposites for highly selective enrichment of glycopeptides. Nanoscale 8(9):4894–4897

    Article  CAS  Google Scholar 

  22. Hong YY, Yao YT, Zhao HL, Sheng QY, Ye ML, Yu CZ, Lan MB (2018) Dendritic mesoporous silica nanoparticles with abundant Ti4+ for Phosphopeptide enrichment from Cancer cells with 96% specificity. Anal Chem 90(12):7617–7625

    Article  CAS  Google Scholar 

  23. Hong YY, Zhao H, Pu CL, Zhan QL, Sheng QY, Lan MB (2018) Hydrophilic Phytic acid-coated magnetic graphene for titanium(IV) immobilization as a novel hydrophilic interaction liquid chromatography-immobilized metal affinity chromatography platform for Glyco- and Phosphopeptide enrichment with controllable selectivity. Anal Chem 90(18):11008–11015

    Article  CAS  Google Scholar 

  24. Pu C, Zhao H, Hong Y, Zhan Q, Lan M (2019) Elution-free ultra-sensitive enrichment for glycopeptides analyses: using a degradable, post-modified Ce-metal-organic framework. Anal Chim Acta 1045:123–131

    Article  CAS  Google Scholar 

  25. Li XT, Xue M, Raabe OG, Aaron HL, Eisen EA, Evans JE, Hayes FA, Inaga S, Tagmount A, Takeuchi M, Vulpe C, Zink JI, Risbud SH, Pinkerton KE (2015) Aerosol droplet delivery of mesoporous silica nanoparticles: a strategy for respiratory-based therapeutics. Nanomed-Nanotechnol Biol Med 11(6):1377–1385

    Article  CAS  Google Scholar 

  26. Tiwari S, Bahadur P (2019) Modified hyaluronic acid based materials for biomedical applications. Int J Biol Macromol 121:556–571

    Article  CAS  Google Scholar 

  27. Zhang M, Zhao X, Fang Z, Niu Y, Lou J, Wu Y, Zou S, Xia S, Sun M, Du F (2017) Fabrication of HA/PEI-functionalized carbon dots for tumor targeting, intracellular imaging and gene delivery. RSC Adv 7(6):3369–3375

    Article  CAS  Google Scholar 

  28. Sun NR, Wang JW, Yao JZ, Deng CH (2017) Hydrophilic mesoporous silica materials for highly specific enrichment of N-linked Glycopeptide. Anal Chem 89(3):1764–1771

    Article  CAS  Google Scholar 

  29. Bi C, Liang Y, Shen L, Tian S, Zhang K, Li Y, He X, Chen L, Zhang Y (2018) Maltose-functionalized hydrophilic magnetic nanoparticles with polymer brushes for highly selective enrichment of N-linked Glycopeptides. ACS Omega 3(2):1572–1580

    Article  CAS  Google Scholar 

  30. Huan WW, Zhang JS, Qin H, Huan F, Wang BC, Wu MJ, Li J (2019) A magnetic nanofiber-based zwitterionic hydrophilic material for the selective capture and identification of glycopeptides. Nanoscale 11(22):10952–10960

    Article  CAS  Google Scholar 

  31. Chen YJ, Xiong ZC, Zhang LY, Zhao JY, Zhang QQ, Peng L, Zhang WB, Ye ML, Zou HF (2015) Facile synthesis of zwitterionic polymer-coated core-shell magnetic nanoparticles for highly specific capture of N-linked glycopeptides. Nanoscale 7(7):3100–3108

    Article  CAS  Google Scholar 

  32. Zhang QQ, Huang YY, Jiang BY, Hu YJ, Xie JJ, Gao X, Jia B, Shen HL, Zhang WJ, Yang PY (2018) In situ synthesis of magnetic mesoporous phenolic resin for the selective enrichment of Glycopeptides. Anal Chem 90(12):7357–7363

    Article  CAS  Google Scholar 

  33. Zhang YW, Li Z, Zhao Q, Zhou YL, Liu HW, Zhang XX (2014) A facilely synthesized amino-functionalized metal-organic framework for highly specific and efficient enrichment of glycopeptides. Chem Commun 50(78):11504–11506

    Article  CAS  Google Scholar 

  34. Li YL, Wang JW, Sun NR, Deng CH (2017) Glucose-6-phosphate-functionalized magnetic microsphere as novel hydrophilic probe for specific capture of N-linked Glycopeptides. Anal Chem 89(20):11151–11158

    Article  CAS  Google Scholar 

  35. Liu QJ, Xie YQ, Deng CH, Lie Y (2017) One-step synthesis of carboxyl-functionalized metal-organic framework with binary ligands for highly selective enrichment of N-linked glycopeptides. Talanta 175:477–482

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Shanghai (No. 19ZR1412000) and the Fundamental Research Funds for the Central Universities (No. 50321101917022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongli Zhao.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 2020 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Q., Zhao, H., Hong, Y. et al. Preparation of a hydrophilic interaction liquid chromatography material by sequential electrostatic deposition of layers of polyethyleneimine and hyaluronic acid for enrichment of glycopeptides. Microchim Acta 186, 600 (2019). https://doi.org/10.1007/s00604-019-3712-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3712-2

Keywords

Navigation