Skip to main content
Log in

The fluorescence mechanism of carbon dots, and methods for tuning their emission color: a review

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Carbon dots (CDs) display tunable photoluminescence and excitation-wavelength dependent emission. The color of fluorescence is affected by electronic bandgap transitions of conjugated π-domains, surface defect states, local fluorophores and element doping. In this review (with 145 refs.), the studies performed in the past 5 years on the relationship between the fluorescence mechanism and modes for modulating the emission color of CDs are summarized. The applications of such CDs in sensors and assays are then outlined. A concluding section then gives an outlook and describes current challenges in the design of CDs with different emission colors.

Schematic representation of the relationship between the color-emitting (blue, green, yellow, red and multicolor) modulation of carbon dots and fluorescence mechanism including bandgap transitions of conjugated π-domains and surface defect states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69

Similar content being viewed by others

References

  1. Ding C, Zhu A, Tian Y (2014) Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc Chem Res 47(1):20–30

    CAS  PubMed  Google Scholar 

  2. Fernando KAS, Sahu S, Liu Y, Lewis WK, Guliants EA, Jafariyan A, Wang P, Bunker CE, Sun Y-P (2015) Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl Mater Interfaces 7(16):8363–8376

    CAS  PubMed  Google Scholar 

  3. Yang P, Zhao J, Zhang L, Li L, Zhu Z (2015) Intramolecular hydrogen bonds quench photoluminescence and enhance photocatalytic activity of carbon Nanodots. Chem Eur J 21(23):8561–8568

    CAS  PubMed  Google Scholar 

  4. Hao T, Wei X, Nie Y, Xu Y, Yan Y, Zhou Z (2016) An eco-friendly molecularly imprinted fluorescence composite material based on carbon dots for fluorescent detection of 4-nitrophenol. Microchim Acta 183(7):2197–2203

    CAS  Google Scholar 

  5. Simões EFC, Leitão JMM, da Silva JCGE (2016) Carbon dots prepared from citric acid and urea as fluorescent probes for hypochlorite and peroxynitrite. Microchim Acta 183(5):1769–1777

    Google Scholar 

  6. Yao W, Wu N, Lin Z, Chen J, Li S, Weng S, Zhang L, Liu A, Lin X (2017) Fluorescent turn-off competitive immunoassay for biotin based on hydrothermally synthesized carbon dots. Microchim Acta 184(3):907–914

    CAS  Google Scholar 

  7. Li X, Liu Y, Song X, Wang H, Gu H, Zeng H (2015) Intercrossed carbon Nanorings with pure surface states as low-cost and environment-friendly phosphors for white-light-emitting diodes. Angew Chem Int Ed 54(6):1759–1764

    CAS  Google Scholar 

  8. Zhu Z, Ma J, Wang Z, Mu C, Fan Z, Du L, Bai Y, Fan L, Yan H, Phillips DL, Yang S (2014) Efficiency enhancement of perovskite solar cells through fast Electron extraction: the role of graphene quantum dots. J Am Chem Soc 136(10):3760–3763

    CAS  PubMed  Google Scholar 

  9. Liu J, Liu C, Zhou Z (2019) A turn-on fluorescent sulfide probe prepared from carbon dots and MnO2 nanosheets. Microchim Acta 186(5):281

    Google Scholar 

  10. Wang Y, Yang Y, Liu W, Ding F, Zou P, Wang X, Zhao Q, Rao H (2019) A carbon dot-based ratiometric fluorometric and colorimetric method for determination of ascorbic acid and of the activity of ascorbic acid oxidase. Microchim Acta 186(4):246

    Google Scholar 

  11. Ning Y, Hu J, Wei K, He G, Wu T, Lu F (2019) Fluorometric determination of mercury(II) via a graphene oxide-based assay using exonuclease III-assisted signal amplification and thymidine-Hg(II)-thymidine interaction. Microchim Acta 186(4):216

    Google Scholar 

  12. Zhao A, Chen Z, Zhao C, Gao N, Ren J, Qu X (2015) Recent advances in bioapplications of C-dots. Carbon 85:309–327

    CAS  Google Scholar 

  13. Zuo P, Lu X, Sun Z, Guo Y, He H (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183(2):519–542

    CAS  Google Scholar 

  14. Miao Q, Li S, Han S, Wang Z, Wu Y, Nie G (2012) Construction of hydroxypropyl-β-cyclodextrin copolymer nanoparticles and targeting delivery of paclitaxel. J Nanopart Res 14(8):1043

    Google Scholar 

  15. Ge J, Lan M, Zhou B, Liu W, Guo L, Wang H, Jia Q, Niu G, Huang X, Zhou H, Meng X, Wang P, Lee C-S, Zhang W, Han X (2014) A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat Commun 5:4596

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pirsaheb M, Mohammadi S, Salimi A, Payandeh M (2019) Functionalized fluorescent carbon nanostructures for targeted imaging of cancer cells: a review. Microchim Acta 186(4):231

    Google Scholar 

  17. Wang C, Jiang K, Wu Q, Wu J, Zhang C (2016) Green synthesis of red-emitting carbon Nanodots as a novel "turn-on" Nanothermometer in living cells. Chemistry 22(41):14475–14479

    CAS  PubMed  Google Scholar 

  18. Roy P, Chen P-C, Periasamy AP, Chen Y-N, Chang H-T (2015) Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Mater Today 18(8):447–458

    CAS  Google Scholar 

  19. Zhu S, Tang S, Zhang J, Yang B (2012) Control the size and surface chemistry of graphene for the rising fluorescent materials. Chem Commun 48(38):4527–4539

    CAS  Google Scholar 

  20. Yeh T-F, Teng C-Y, Chen S-J, Teng H (2014) Nitrogen-doped graphene oxide quantum dots as Photocatalysts for overall water-splitting under visible light illumination. Adv Mater 26(20):3297–3303

    CAS  PubMed  Google Scholar 

  21. Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8(2):355–381

    CAS  Google Scholar 

  22. Yan F, Jiang Y, Sun X, Bai Z, Zhang Y, Zhou X (2018) Surface modification and chemical functionalization of carbon dots: a review. Microchim Acta 185(9):424

    Google Scholar 

  23. Miao X, Qu D, Yang D, Nie B, Zhao Y, Fan H, Sun Z (2018) Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv Mater 30(1):1704740

    Google Scholar 

  24. Sk MA, Ananthanarayanan A, Huang L, Lim KH, Chen P (2014) Revealing the tunable photoluminescence properties of graphene quantum dots. J Mater Chem C 2(34):6954–6960

    CAS  Google Scholar 

  25. Kwon W, Lee G, Do S, Joo T, Rhee S-W (2014) Size-controlled soft-template synthesis of carbon Nanodots toward versatile photoactive materials. Small 10(3):506–513

    CAS  PubMed  Google Scholar 

  26. Zhang T, Zhu GY, Yu CH, Xie Y, Xia MY, Lu BY, Fei X, Peng Q (2019) The UV absorption of graphene oxide is size-dependent: possible calibration pitfalls. Microchim Acta 186(3):207

    Google Scholar 

  27. Krishnamoorthy K, Veerapandian M, Mohan R, Kim S-J (2012) Investigation of Raman and photoluminescence studies of reduced graphene oxide sheets. Applied Physics A 106(3):501–506

    CAS  Google Scholar 

  28. Bhattacharya A, Chatterjee S, Prajapati R, Mukherjee TK (2015) Size-dependent penetration of carbon dots inside the ferritin nanocages: evidence for the quantum confinement effect in carbon dots. Phys Chem Chem Phys 17(19):12833–12840

    CAS  PubMed  Google Scholar 

  29. Liang Q, Ma W, Shi Y, Li Z, Yang X (2013) Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon 60:421–428

    CAS  Google Scholar 

  30. Tian Z, Zhang X, Li D, Zhou D, Jing P, Shen D, Qu S, Zboril R, Rogach AL (2017) Full-color inorganic carbon dot phosphors for white-light-emitting diodes. Adv Opt Mater 5(19):1700416

    Google Scholar 

  31. Yuan F, Wang Z, Li X, Li Y, Tan Z, Fan L, Yang S (2017) Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv Mater 29(3):1604436

    Google Scholar 

  32. Shen J, Zhu Y, Yang X, Zong J, Zhang J, Li C (2012) One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J Chem 36(1):97–101

    CAS  Google Scholar 

  33. Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48(31):3686–3699

    CAS  Google Scholar 

  34. Du J, Wang H, Wang L, Zhu S, Song Y, Yang B, Sun H (2016) Insight into the effect of functional groups on visible-fluorescence emissions of graphene quantum dots. J Mater Chem C 4(11):2235–2242

    CAS  Google Scholar 

  35. Zhang X, Zhang Y, Wang Y, Kalytchuk S, Kershaw SV, Wang Y, Wang P, Zhang T, Zhao Y, Zhang H, Cui T, Wang Y, Zhao J, Yu WW, Rogach AL (2013) Color-switchable electroluminescence of carbon dot light-emitting diodes. ACS Nano 7(12):11234–11241

    CAS  PubMed  Google Scholar 

  36. Sachdev A, Matai I, Gopinath P (2014) Implications of surface passivation on physicochemical and bioimaging properties of carbon dots. RSC Adv 4(40):20915–20921

    CAS  Google Scholar 

  37. Jiang K, Wang Y, Cai C, Lin H (2018) Conversion of carbon dots from fluorescence to Ultralong room-temperature phosphorescence by heating for security applications. Adv Mater 30(26):e1800783

    PubMed  Google Scholar 

  38. Zhang Y, Hu Y, Lin J, Fan Y, Li Y, Lv Y, Liu X (2016) Excitation wavelength Independence: toward low-threshold amplified spontaneous emission from carbon Nanodots. ACS Appl Mater Interfaces 8(38):25454–25460

    CAS  PubMed  Google Scholar 

  39. Kiran S, Misra RDK (2015) Mechanism of intracellular detection of glucose through nonenzymatic and boronic acid functionalized carbon dots. J Biomed Mater Res A 103(9):2888–2897

    CAS  PubMed  Google Scholar 

  40. Yang H, Li F, Zou C, Huang Q, Chen D (2017) Sulfur-doped carbon quantum dots and derived 3D carbon nanoflowers are effective visible to near infrared fluorescent probes for hydrogen peroxide. Microchim Acta 184(7):2055–2062

    CAS  Google Scholar 

  41. Xu Y, Wu M, Feng X-Z, Yin X-B, He X-W, Zhang Y-K (2013) Reduced carbon dots versus oxidized carbon dots: photo- and Electrochemiluminescence investigations for selected applications. Chem Eur J 19(20):6282–6288

    CAS  PubMed  Google Scholar 

  42. Ding H, Yu SB, Wei JS, Xiong HM (2016) Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10(1):484–491

    CAS  PubMed  Google Scholar 

  43. Yuan B, Guan S, Sun X, Li X, Zeng H, Xie Z, Chen P, Zhou S (2018) Highly efficient carbon dots with reversibly switchable green-red emissions for trichromatic white light-emitting diodes. ACS Appl Mater Interfaces 10(18):16005–16014

    CAS  PubMed  Google Scholar 

  44. Shen Z, Zhang C, Yu X, Li J, Wang Z, Zhang Z, Liu B (2018) Microwave-assisted synthesis of cyclen functional carbon dots to construct a ratiometric fluorescent probe for tetracycline detection. J Mater Chem C 6(36):9636–9641

    CAS  Google Scholar 

  45. Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22(6):734–738

    PubMed  Google Scholar 

  46. Gude V, Das A, Chatterjee T, Mandal PK (2016) Molecular origin of photoluminescence of carbon dots: aggregation-induced orange-red emission. Phys Chem Chem Phys 18(40):28274–28280

    CAS  PubMed  Google Scholar 

  47. Hu C, Su T-R, Lin T-J, Chang C-W, Tung K-L (2018) Yellowish and blue luminescent graphene oxide quantum dots prepared via a microwave-assisted hydrothermal route using H2O2 and KMnO4 as oxidizing agents. New J Chem 42(6):3999–4007

    CAS  Google Scholar 

  48. Song Y, Zhu S, Zhang S, Fu Y, Wang L, Zhao X, Yang B (2015) Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. J Mater Chem C 3(23):5976–5984

    CAS  Google Scholar 

  49. Ehrat F, Bhattacharyya S, Schneider J, Lof A, Wyrwich R, Rogach AL, Stolarczyk JK, Urban AS, Feldmann J (2017) Tracking the source of carbon dot photoluminescence: aromatic domains versus molecular fluorophores. Nano Lett 17(12):7710–7716

    CAS  PubMed  Google Scholar 

  50. D'Angelis d ESBC, Corrêa JR, Medeiros GA, Barreto G, Magalhães KG, de Oliveira AL, Spencer J, Rodrigues MO, BAD N (2015) Carbon dots (C-dots) from cow manure with impressive subcellular selectivity tuned by simple chemical modification. Chem Eur J 21(13):5055–5060

    Google Scholar 

  51. Teng X, Ma C, Ge C, Yan M, Yang J, Zhang Y, Morais PC, Bi H (2014) Green synthesis of nitrogen-doped carbon dots from konjac flour with “off–on” fluorescence by Fe3+ and l-lysine for bioimaging. J Mater Chem B 2(29):4631–4639

    CAS  PubMed  Google Scholar 

  52. Wang L, Cao HX, Pan CG, He YS, Liu HF, Zhou LH, Li CQ, Liang GX (2018) A fluorometric aptasensor for bisphenol a based on the inner filter effect of gold nanoparticles on the fluorescence of nitrogen-doped carbon dots. Microchim Acta 186(1):28

    Google Scholar 

  53. Liu Y, Tang X, Deng M, Cao Y, Li Y, Zheng H, Li F, Yan F, Lan T, Shi L, Gao L, Huang L, Zhu T, Lin H, Bai Y, Qu D, Huang X, Qiu F (2019) Nitrogen doped graphene quantum dots as a fluorescent probe for mercury(II) ions. Microchim Acta 186(3):140

    Google Scholar 

  54. Wu WC, Chen HT, Lin SC, Chen HY, Chen FR, Chang HT, Tseng FG (2019) Nitrogen-doped carbon nanodots prepared from polyethylenimine for fluorometric determination of salivary uric acid. Microchim Acta 186(3):166

    Google Scholar 

  55. Niino S, Takeshita S, Iso Y, Isobe T (2016) Influence of chemical states of doped nitrogen on photoluminescence intensity of hydrothermally synthesized carbon dots. J Lumin 180:123–131

    CAS  Google Scholar 

  56. Yuan K, Zhang X, Qin R, Ji X, Cheng Y, Li L, Yang X, Lu Z, Liu H (2018) Surface state modulation of red emitting carbon dots for white light-emitting diodes. J Mater Chem C 6(46):12631–12637

    CAS  Google Scholar 

  57. Mintz KJ, Zhou Y, Leblanc RM (2019) Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale 11(11):4634–4652

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang Y, Zhuang Q, Ni Y (2015) Facile microwave-assisted solid-phase synthesis of highly fluorescent nitrogen–sulfur-Codoped carbon quantum dots for cellular imaging applications. Chem Eur J 21(37):13004–13011

    CAS  PubMed  Google Scholar 

  59. Zhang H, Chen Y, Liang M, Xu L, Qi S, Chen H, Chen X (2014) Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells. Anal Chem 86(19):9846–9852

    CAS  PubMed  Google Scholar 

  60. Zhou X, Zhao G, Tan X, Qian X, Zhang T, Gui J, Yang L, Xie X (2019) Nitrogen-doped carbon dots with high quantum yield for colorimetric and fluorometric detection of ferric ions and in a fluorescent ink. Microchim Acta 186(2):67

    Google Scholar 

  61. Saberi Z, Rezaei B, Ensafi AA (2019) Fluorometric label-free aptasensor for detection of the pesticide acetamiprid by using cationic carbon dots prepared with cetrimonium bromide. Microchim Acta 186(5):273

    Google Scholar 

  62. Lu KH, Lin JH, Lin CY, Chen CF, Yeh YC (2019) A fluorometric paper test for chromium(VI) based on the use of N-doped carbon dots. Microchim Acta 186(4):227

    Google Scholar 

  63. Jiang K, Sun S, Zhang L, Lu Y, Wu A, Cai C, Lin H (2015) Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew Chem Int Ed Eng 54(18):5360–5363

    CAS  Google Scholar 

  64. Pan L, Sun S, Zhang A, Jiang K, Zhang L, Dong C, Huang Q, Wu A, Lin H (2015) Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv Mater 27(47):7782–7787

    CAS  PubMed  Google Scholar 

  65. Yuan YH, Liu ZX, Li RS, Zou HY, Lin M, Liu H, Huang CZ (2016) Synthesis of nitrogen-doping carbon dots with different photoluminescence properties by controlling the surface states. Nanoscale 8(12):6770–6776

    CAS  PubMed  Google Scholar 

  66. Hu C, Liu Y, Yang Y, Cui J, Huang Z, Wang Y, Yang L, Wang H, Xiao Y, Rong J (2013) One-step preparation of nitrogen-doped graphene quantum dots from oxidized debris of graphene oxide. J Mater Chem B 1(1):39–42

    CAS  PubMed  Google Scholar 

  67. Liu J, Liu X, Luo H, Gao Y (2014) One-step preparation of nitrogen-doped and surface-passivated carbon quantum dots with high quantum yield and excellent optical properties. RSC Adv 4(15):7648–7654

    CAS  Google Scholar 

  68. Lan M, Di Y, Zhu X, Ng T-W, Xia J, Liu W, Meng X, Wang P, Lee C-S, Zhang W (2015) A carbon dot-based fluorescence turn-on sensor for hydrogen peroxide with a photo-induced electron transfer mechanism. Chem Commun 51(85):15574–15577

    CAS  Google Scholar 

  69. Hola K, Sudolska M, Kalytchuk S, Nachtigallova D, Rogach AL, Otyepka M, Zboril R (2017) Graphitic nitrogen triggers red fluorescence in carbon dots. ACS Nano 11(12):12402–12410

    CAS  PubMed  Google Scholar 

  70. Liu C, Wang R, Wang B, Deng Z, Jin Y, Kang Y, Chen J (2018) Orange, yellow and blue luminescent carbon dots controlled by surface state for multicolor cellular imaging, light emission and illumination. Microchim Acta 185(12):539

    Google Scholar 

  71. Hu Y, Yang J, Tian J, Jia L, Yu J-S (2014) Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence. Carbon 77:775–782

    CAS  Google Scholar 

  72. Li H, Sun C, Ali M, Zhou F, Zhang X, MacFarlane DR (2015) Sulfated carbon quantum dots as efficient visible-light switchable acid catalysts for room-temperature ring-opening reactions. Angew Chem Int Ed 54(29):8420–8424

    CAS  Google Scholar 

  73. Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, Li CM, Yu T (2013) Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed Eng 52(30):7800–7804

    CAS  Google Scholar 

  74. Guo L, Ge J, Liu W, Niu G, Jia Q, Wang H, Wang P (2016) Tunable multicolor carbon dots prepared from well-defined polythiophene derivatives and their emission mechanism. Nanoscale 8(2):729–734

    CAS  PubMed  Google Scholar 

  75. Miao X, Yan X, Qu D, Li D, Tao FF, Sun Z (2017) Red emissive sulfur, nitrogen Codoped carbon dots and their application in ion detection and Theraonostics. ACS Appl Mater Interfaces 9(22):18549–18556

    CAS  PubMed  Google Scholar 

  76. Walekar LS, Zheng M, Zheng L, Long M (2019) Selenium and nitrogen co-doped carbon quantum dots as a fluorescent probe for perfluorooctanoic acid. Microchim Acta 186(5):278

    Google Scholar 

  77. Jia Y, Hu Y, Li Y, Zeng Q, Jiang X, Cheng Z (2019) Boron doped carbon dots as a multifunctional fluorescent probe for sorbate and vitamin B12. Microchim Acta 186(2):84

    Google Scholar 

  78. Barman MK, Jana B, Bhattacharyya S, Patra A (2014) Photophysical properties of doped carbon dots (N, P, and B) and their influence on Electron/hole transfer in carbon dots–nickel (II) Phthalocyanine conjugates. J Phys Chem C 118(34):20034–20041

    CAS  Google Scholar 

  79. Zuo G, Xie A, Li J, Su T, Pan X, Dong W (2017) Large emission red-shift of carbon dots by fluorine doping and their applications for red cell imaging and sensitive intracellular ag+ detection. J Phys Chem C 121(47):26558–26565

    Google Scholar 

  80. Yang S, Sun J, Li X, Zhou W, Wang Z, He P, Ding G, Xie X, Kang Z, Jiang M (2014) Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection. J Mater Chem A 2(23):8660

    CAS  Google Scholar 

  81. Xu Q, Kuang T, Liu Y, Cai L, Peng X, Sreenivasan Sreeprasad T, Zhao P, Yu Z, Li N (2016) Heteroatom-doped carbon dots: synthesis, characterization, properties, photoluminescence mechanism and biological applications. J Mater Chem B 4(45):7204–7219

    CAS  PubMed  Google Scholar 

  82. Wang M, Meng G (2016) Fluorescence “turn on” detection of Cr3+ using N-doped-CDs and graphitic nanosheet hybrids. RSC Adv 6(76):72728–72732

    CAS  Google Scholar 

  83. Peng J, Yin W, Shi J, Jin X, Ni G (2018) Magnesium and nitrogen co-doped carbon dots as fluorescent probes for quenchometric determination of paraoxon using pralidoxime as a linker. Microchim Acta 186(1):24

    Google Scholar 

  84. Lin L, Xiao Y, Wang Y, Zeng Y, Lin Z, Chen X (2019) Hydrothermal synthesis of nitrogen and copper co-doped carbon dots with intrinsic peroxidase-like activity for colorimetric discrimination of phenylenediamine isomers. Microchim Acta 186(5):288

    Google Scholar 

  85. Liu Y, Chao D, Zhou L, Li Y, Deng R, Zhang H (2018) Yellow emissive carbon dots with quantum yield up to 68.6% from manganese ions. Carbon 135:253–259

    CAS  Google Scholar 

  86. Wu W, Zhan L, Fan W, Song J, Li X, Li Z, Wang R, Zhang J, Zheng J, Wu M, Zeng H (2015) Cu-N dopants boost electron transfer and photooxidation reactions of carbon dots. Angew Chem Int Ed Eng 54(22):6540–6544

    CAS  Google Scholar 

  87. Cheng J, Wang C-F, Zhang Y, Yang S, Chen S (2016) Zinc ion-doped carbon dots with strong yellow photoluminescence. RSC Adv 6(43):37189–37194

    CAS  Google Scholar 

  88. Zhang HY, Wang Y, Xiao S, Wang H, Wang JH, Feng L (2017) Rapid detection of Cr(VI) ions based on cobalt(II)-doped carbon dots. Biosens Bioelectron 87:46–52

    CAS  PubMed  Google Scholar 

  89. Li L, Wu G, Yang G, Peng J, Zhao J, Zhu J-J (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5(10):4015–4039

    CAS  PubMed  Google Scholar 

  90. Tang L, Ji R, Li X, Bai G, Liu CP, Hao J, Lin J, Jiang H, Teng KS, Yang Z, Lau SP (2014) Deep ultraviolet to near-infrared emission and Photoresponse in layered N-doped graphene quantum dots. ACS Nano 8(6):6312–6320

    CAS  PubMed  Google Scholar 

  91. Feng XT, Zhang F, Wang YL, Zhang Y, Yang YZ, Liu XG (2015) Luminescent carbon quantum dots with high quantum yield as a single white converter for white light emitting diodes. Appl Phys Lett 107(21):213102

    Google Scholar 

  92. Dang DK, Sundaram C, Ngo Y-LT, Chung JS, Kim EJ, Hur SH (2018) One pot solid-state synthesis of highly fluorescent N and S co-doped carbon dots and its use as fluorescent probe for Ag+ detection in aqueous solution. Sensors Actuators B Chem 255:3284–3291

    CAS  Google Scholar 

  93. Qian Z, Ma J, Shan X, Feng H, Shao L, Chen J (2014) Highly luminescent N-doped carbon quantum dots as an effective multifunctional fluorescence sensing platform. Chem Eur J 20(8):2254–2263

    CAS  PubMed  Google Scholar 

  94. Lin L, Wang Y, Xiao Y, Liu W (2019) Hydrothermal synthesis of carbon dots codoped with nitrogen and phosphorus as a turn-on fluorescent probe for cadmium(II). Microchim Acta 186(3):147

    Google Scholar 

  95. Wang L, Zhu S-J, Wang H-Y, Qu S-N, Zhang Y-L, Zhang J-H, Chen Q-D, Xu H-L, Han W, Yang B, Sun H-B (2014) Common origin of green luminescence in carbon Nanodots and graphene quantum dots. ACS Nano 8(3):2541–2547

    CAS  PubMed  Google Scholar 

  96. Yang Y, Hou J, Huo D, Wang X, Li J, Xu G, Bian M, He Q, Hou C, Yang M (2019) Green emitting carbon dots for sensitive fluorometric determination of cartap based on its aggregation effect on gold nanoparticles. Microchim Acta 186(4):259

    Google Scholar 

  97. Yang C, Thomsen RP, Ogaki R, Kjems J, Teo BM (2015) Ultrastable green fluorescence carbon dots with a high quantum yield for bioimaging and use as theranostic carriers. J Mater Chem B 3(22):4577–4584

    CAS  PubMed  Google Scholar 

  98. Zhang J, Zhao X, Xian M, Dong C, Shuang S (2018) Folic acid-conjugated green luminescent carbon dots as a nanoprobe for identifying folate receptor-positive cancer cells. Talanta 183:39–47

    CAS  PubMed  Google Scholar 

  99. Mohan R, Drbohlavova J, Hubalek J (2018) Dual band emission in carbon dots. Chem Phys Lett 692:196–201

    CAS  Google Scholar 

  100. Jiang K, Wu J, Wu Q, Wang X, Wang C, Li Y (2017) Stable fluorescence of green-emitting carbon Nanodots as a potential Nanothermometer in biological media. Part Part Syst Charact 34(2):1600197

    Google Scholar 

  101. Yang S, Sun X, Wang Z, Wang X, Guo G, Pu Q (2018) Anomalous enhancement of fluorescence of carbon dots through lanthanum doping and potential application in intracellular imaging of ferric ion. Nano Res 11(3):1369–1378

    CAS  Google Scholar 

  102. Pan X, Zhang Y, Sun X, Pan W, Yu G, Zhao Q, Wang J (2018) Carbon dots originated from methyl red with molecular state and surface state controlled emissions for sensing and imaging. J Lumin 204:303–311

    CAS  Google Scholar 

  103. Zhai Y, Wang Y, Li D, Zhou D, Jing P, Shen D, Qu S (2018) Red carbon dots-based phosphors for white light-emitting diodes with color rendering index of 92. J Colloid Interface Sci 528:281–288

    CAS  PubMed  Google Scholar 

  104. Yan F, Bai Z, Zu F, Zhang Y, Sun X, Ma T, Chen L (2019) Yellow-emissive carbon dots with a large stokes shift are viable fluorescent probes for detection and cellular imaging of silver ions and glutathione. Microchim Acta 186(2):113

    Google Scholar 

  105. Li J, Zuo G, Pan X, Wei W, Qi X, Su T, Dong W (2018) Nitrogen-doped carbon dots as a fluorescent probe for the highly sensitive detection of Ag(+) and cell imaging. Luminescence 33(1):243–248

    CAS  PubMed  Google Scholar 

  106. Jiang K, Sun S, Zhang L, Wang Y, Cai C, Lin H (2015) Bright-yellow-emissive N-doped carbon dots: preparation, cellular imaging, and bifunctional sensing. ACS Appl Mater Interfaces 7(41):23231–23238

    CAS  PubMed  Google Scholar 

  107. Ding YY, Gong XJ, Liu Y, Lu WJ, Gao YF, Xian M, Shuang SM, Dong C (2018) Facile preparation of bright orange fluorescent carbon dots and the constructed biosensing platform for the detection of pH in living cells. Talanta 189:8–15

    CAS  PubMed  Google Scholar 

  108. Mutuyimana FP, Liu J, Nsanzamahoro S, Na M, Chen H, Chen X (2019) Yellow-emissive carbon dots as a fluorescent probe for chromium(VI). Microchim Acta 186(3):163

    Google Scholar 

  109. Xu Z, Wang C, Jiang K, Lin H, Huang Y, Zhang C (2015) Microwave-assisted rapid synthesis of amphibious yellow fluorescent carbon dots as a colorimetric Nanosensor for Cr(VI). Part Part Syst Charact 32(12):1058–1062

    CAS  Google Scholar 

  110. Wang W, Peng J, Li F, Su B, Chen X, Chen X (2018) Phosphorus and chlorine co-doped carbon dots with strong photoluminescence as a fluorescent probe for ferric ions. Microchim Acta 186(1):32

    Google Scholar 

  111. Qu S, Zhou D, Li D, Ji W, Jing P, Han D, Liu L, Zeng H, Shen D (2016) Toward efficient Orange emissive carbon Nanodots through conjugated sp(2) -domain controlling and surface charges engineering. Adv Mater 28(18):3516–3521

    CAS  PubMed  Google Scholar 

  112. Song L, Cui Y, Zhang C, Hu Z, Liu X (2016) Microwave-assisted facile synthesis of yellow fluorescent carbon dots from o-phenylenediamine for cell imaging and sensitive detection of Fe3+ and H2O2. RSC Adv 6(21):17704–17712

    CAS  Google Scholar 

  113. Geng B, Yang D, Zheng F, Zhang C, Zhan J, Li Z, Pan D, Wang L (2017) Facile conversion of coal tar to orange fluorescent carbon quantum dots and their composite encapsulated by liposomes for bioimaging. New J Chem 41(23):14444–14451

    CAS  Google Scholar 

  114. Wang Y, Zhang Y, Jia M, Meng H, Li H, Guan Y, Feng L (2015) Functionalization of carbonaceous Nanodots from Mn(II) -coordinating functional knots. Chemistry 21(42):14843–14850

    CAS  PubMed  Google Scholar 

  115. Dong Y, Chen Y, You X, Lin W, Lu C-H, Yang H-H, Chi Y (2017) High photoluminescent carbon based dots with tunable emission color from orange to green. Nanoscale 9(3):1028–1032

    CAS  PubMed  Google Scholar 

  116. Sun Y, Wang X, Wang C, Tong D, Wu Q, Jiang K, Jiang Y, Wang C, Yang M (2018) Red emitting and highly stable carbon dots with dual response to pH values and ferric ions. Microchim Acta 185(1):83

    Google Scholar 

  117. Huang S, Yang E, Yao J, Liu Y, Xiao Q (2018) Red emission nitrogen, boron, sulfur co-doped carbon dots for "on-off-on" fluorescent mode detection of Ag(+) ions and l-cysteine in complex biological fluids and living cells. Anal Chim Acta 1035:192–202

    CAS  PubMed  Google Scholar 

  118. Li C, Wang Y, Zhang X, Guo X, Kang X, Du L, Liu Y (2018) Red fluorescent carbon dots with phenylboronic acid tags for quick detection of Fe(III) in PC12 cells. J Colloid Interface Sci 526:487–496

    CAS  PubMed  Google Scholar 

  119. Sun S, Zhang L, Jiang K, Wu A, Lin H (2016) Toward high-efficient red emissive carbon dots: facile preparation, unique properties, and applications as multifunctional Theranostic agents. Chem Mater 28(23):8659–8668

    CAS  Google Scholar 

  120. Wang Z, Yuan F, Li X, Li Y, Zhong H, Fan L, Yang S (2017) 53% efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes. Adv Mater 29(37)

  121. Ding H, Ji Y, Wei J-S, Gao Q-Y, Zhou Z-Y, Xiong H-M (2017) Facile synthesis of red-emitting carbon dots from pulp-free lemon juice for bioimaging. J Mater Chem B 5(26):5272–5277

    CAS  PubMed  Google Scholar 

  122. Jiang BP, Zhou B, Shen XC, Yu YX, Ji SC, Wen CC, Liang H (2015) Selective probing of gaseous Ammonia using red-emitting carbon dots based on an interfacial response mechanism. Chemistry 21(52):18993–18999

    CAS  PubMed  Google Scholar 

  123. Ge J, Jia Q, Liu W, Guo L, Liu Q, Lan M, Zhang H, Meng X, Wang P (2015) Red-emissive carbon dots for fluorescent, photoacoustic, and thermal Theranostics in living mice. Adv Mater 27(28):4169–4177

    CAS  PubMed  Google Scholar 

  124. Hou J, Wang W, Zhou T, Wang B, Li H, Ding L (2016) Synthesis and formation mechanistic investigation of nitrogen-doped carbon dots with high quantum yields and yellowish-green fluorescence. Nanoscale 8(21):11185–11193

    CAS  PubMed  Google Scholar 

  125. Chen D, Wu W, Yuan Y, Zhou Y, Wan Z, Huang P (2016) Intense multi-state visible absorption and full-color luminescence of nitrogen-doped carbon quantum dots for blue-light-excitable solid-state-lighting. J Mater Chem C 4(38):9027–9035

    CAS  Google Scholar 

  126. Yang C, Zhu S, Li Z, Li Z, Chen C, Sun L, Tang W, Liu R, Sun Y, Yu M (2016) Nitrogen-doped carbon dots with excitation-independent long-wavelength emission produced by a room-temperature reaction. Chem Commun 52(80):11912–11914

    CAS  Google Scholar 

  127. Han L, Liu SG, Dong JX, Liang JY, Li LJ, Li NB, Luo HQ (2017) Facile synthesis of multicolor photoluminescent polymer carbon dots with surface-state energy gap-controlled emission. J Mater Chem C 5(41):10785–10793

    CAS  Google Scholar 

  128. Joseph J, Anappara AA (2017) White-light-emitting carbon dots prepared by the electrochemical exfoliation of graphite. ChemPhysChem 18(3):292–298

    CAS  PubMed  Google Scholar 

  129. Liu ML, Yang L, Li RS, Chen BB, Liu H, Huang CZ (2017) Large-scale simultaneous synthesis of highly photoluminescent green amorphous carbon nanodots and yellow crystalline graphene quantum dots at room temperature. Green Chem 19(15):3611–3617

    CAS  Google Scholar 

  130. Hu S, Trinchi A, Atkin P, Cole I (2015) Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light. Angew Chem Int Ed Eng 54(10):2970–2974

    CAS  Google Scholar 

  131. Li X, Zhang S, Kulinich SA, Liu Y, Zeng H (2014) Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Sci Rep 4(1):4976

    CAS  PubMed Central  Google Scholar 

  132. Dhenadhayalan N, Lin K-C, Suresh R, Ramamurthy P (2016) Unravelling the multiple emissive states in citric-acid-derived carbon dots. J Phys Chem C 120(2):1252–1261

    CAS  Google Scholar 

  133. Sun Z, Li X, Wu Y, Wei C, Zeng H (2018) Origin of green luminescence in carbon quantum dots: specific emission bands originate from oxidized carbon groups. New J Chem 42(6):4603–4611

    CAS  Google Scholar 

  134. Zheng Y, Yang D, Wu X, Yan H, Zhao Y, Feng B, Duan K, Weng J, Wang J (2015) A facile approach for the synthesis of highly luminescent carbon dots using vitamin-based small organic molecules with benzene ring structure as precursors. RSC Adv 5(110):90245–90254

    CAS  Google Scholar 

  135. Yuan R, Liu J, Xiang W, Liang X (2018) Red-emitting carbon dots phosphors: a promising red color convertor toward warm white light emitting diodes. J Mater Sci Mater Electron 29(12):10453–10460

    CAS  Google Scholar 

  136. Fu M, Ehrat F, Wang Y, Milowska KZ, Reckmeier C, Rogach AL, Stolarczyk JK, Urban AS, Feldmann J (2015) Carbon dots: a unique fluorescent cocktail of polycyclic aromatic hydrocarbons. Nano Lett 15(9):6030–6035

    CAS  PubMed  Google Scholar 

  137. Yuan B, Xie Z, Chen P, Zhou S (2018) Highly efficient carbon dots and their nanohybrids for trichromatic white LEDs. J Mater Chem C 6(22):5957–5963

    CAS  Google Scholar 

  138. Bao L, Liu C, Zhang Z-L, Pang D-W (2015) Photoluminescence-tunable carbon Nanodots: surface-state energy-gap tuning. Adv Mater 27(10):1663–1667

    CAS  PubMed  Google Scholar 

  139. Hola K, Bourlinos AB, Kozak O, Berka K, Siskova KM, Havrdova M, Tucek J, Safarova K, Otyepka M, Giannelis EP, Zboril R (2014) Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COO− induced red-shift emission. Carbon 70:279–286

    CAS  Google Scholar 

  140. Ding H, Wei JS, Zhang P, Zhou ZY, Gao QY, Xiong HM (2018) Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths. Small 14(22):e1800612

    PubMed  Google Scholar 

  141. Zhan J, Geng B, Wu K, Xu G, Wang L, Guo R, Lei B, Zheng F, Pan D, Wu M (2018) A solvent-engineered molecule fusion strategy for rational synthesis of carbon quantum dots with multicolor bandgap fluorescence. Carbon 130:153–163

    CAS  Google Scholar 

  142. Chen Y, Lian H, Wei Y, He X, Chen Y, Wang B, Zeng Q, Lin J (2018) Concentration-induced multi-colored emissions in carbon dots: origination from triple fluorescent centers. Nanoscale 10(14):6734–6743

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (51678409, 51638011 and 51578375), Tianjin Research Program of Application Foundation and Advanced Technology (18JCYBJC87500, 15ZCZDSF00880), State Key Laboratory of Separation Membranes and Membrane Processes (Z1-201507), and the Program for Innovative Research Team in University of Tianjin (TD13-5042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanyong Yan.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, F., Sun, Z., Zhang, H. et al. The fluorescence mechanism of carbon dots, and methods for tuning their emission color: a review. Microchim Acta 186, 583 (2019). https://doi.org/10.1007/s00604-019-3688-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3688-y

Keywords

Navigation