Skip to main content
Log in

Ultrasensitive detection of heparin by exploiting the silver nanoparticle-enhanced fluorescence of graphitic carbon nitride (g-C3N4) quantum dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A composite (Ag-g-CNQDs) was prepared from graphitic carbon nitride quantum dots and silver nanoparticles by water phase synthesis. Aided by metal-enhanced fluorescence, the composite exhibits excitation-dependent red emission with a peak at 600 nm with a quantum yield of 21%. If the composite is coated with polyethylenimine (PEI) to form the Ag-g-CNQD/PEI complexe, fluorescence is strongly reduced. Upon addition of heparin, the fluorescence of the system is enhanced because PEI has a higher affinity for heparin than Ag-g-CNQDs. The effect was used to design a fluorometric  assay for heparin. The emission at 600 nm increases linearly in the 0.025 to 2.5 μM heparin concentration range, with a 8.2 nM limit of detection.

Schematic illustration for fabricating a composite consisting of silver nanoparticles and graphitic carbon nitride quantum dots (Ag-g-CNQDs). Its red fluorescence is weak in presence of polyethyleneimine but restored on addition of heparin. This forms the basis for a new method for heparin detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thomas A, Fischer A, Goettmann F, Antonietti M, Müller JO, Schlögl R, Carlsson JM (2008) Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J Mater Chem 18(41):4893–4908

    Article  CAS  Google Scholar 

  2. Wang Y, Wang XC, Antonietti M (2012) Polymeres graphitisches Kohlenstoffnitrid als heterogener Organokatalysator: von der Photochemie über die Vielzweckkatalyse hin zur nachhaltigen Chemie. Angew Chem 124(1):70–92

    Article  Google Scholar 

  3. Wang Y, Wang XC, Antonietti M (2012) Polymeric graphitic carbon nitride as a heterogeneous Organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew Chem Int Ed 51(1):68–89

    Article  CAS  Google Scholar 

  4. Zou WX, Shao Y, Pu Y, Luo YD, Sun JF, Ma KL, Tang CJ, Gao F, Dong L (2017) Enhanced visible light photocatalytic hydrogen evolution via cubic CeO2 hybridized g-C3N4 composite. Appl Catal B Environ 218:51–59

    Article  CAS  Google Scholar 

  5. Liu X, Chen N, Li YX, Deng DY, Xing XX, Wang YD (2016) A general nonaqueous sol-gel route to g-C3N4-coupling photocatalysts: the case of Z-scheme g-C3N4/TiO2 with enhanced photodegradation toward RhB under visible-light. Sci Rep 6:39531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen LC, Song JB (2017) Tailored graphitic carbon nitride nanostructures: synthesis, modification, and sensing applications. Adv Funct Mater 27(39):1702695

    Article  CAS  Google Scholar 

  7. Yan J, Rodrigues MTF, Song ZL, Li HP, Xu H, Liu H, Wu JJ, Xu YG, Song YH, Liu Y, Yu P, Yang W, Vajtai R, Li HM, Yuan SQ, Ajayan PM (2017) High-throughput single-particle analysis of metal-enhanced fluorescence in free solution using Ag@SiO2 Core-Shellnanoparticles. ACS Sensors 2(9):1369–1376

  8. Oh J, Yoo RJ, Kim SY, Lee YJ, Kim DW, Park S (2015) Oxidized carbon nitrides: water-dispersible, atomically thin carbon nitride-based Nanodots and their performances as bioimaging probes. Chem-Eur J 21(16):6241–6246

    Article  CAS  PubMed  Google Scholar 

  9. Liu NY, Liu J, Kong WQ, Li H, Huang H, Liu Y, Kang ZH (2014) One-step catalase controllable degradation of C3N4 for N-doped carbon dot green fabrication and their bioimaging applications. J Mater Chem B 2(35):5768–5774

    Article  CAS  Google Scholar 

  10. Zhang J, Chen Y, Wang X (2015) Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications. Energy Environ Sci 8(11):3092–3108

    Article  CAS  Google Scholar 

  11. Wang W, Yu JC, Shen ZR, Chan DKL, Gu T (2014) g-C3N4 quantum dots: direct synthesis, upconversion properties and photocatalytic application. Chem Commun 50(70):1:0148

    Article  CAS  Google Scholar 

  12. Sun S, Liang S (2017) Recent advances in functional mesoporous graphitic carbon nitride (mpg-C3N4) polymers. Nanoscale 9(30):10544–10578

    Article  CAS  PubMed  Google Scholar 

  13. Lu QJ, Wang HY, Liu YL, Hou YX, Li HT, Zhang YY (2017) Graphitic carbon nitride nanodots: as reductant for the synthesis of silver nanoparticles and its biothiols biosensing application. Biosens Bioelectron 89:411–416

    Article  CAS  PubMed  Google Scholar 

  14. Achadu OJ, Nyokong T (2017) In situ one-pot synthesis of graphitic carbon nitride quantum dots and its 2,2,6,6-tetramethyl(piperidin-1-yl)oxyl derivatives as fluorescent nanosensors for ascorbic acid. Anal Chim Acta 991:113–126

    Article  CAS  PubMed  Google Scholar 

  15. Yin Y, Zhang YM, Gao TL, Yao T, Han JC, Han ZB, Zhang ZH, Wu Q, Song B (2017) One-pot evaporation-condensation strategy for green synthesis of carbon nitride quantum dots: an efficient fluorescent probe for ion detection and bioimaging. Mater Chem Phys 194:293–301

    Article  CAS  Google Scholar 

  16. Pang XH, Bian HJ, Wang WJ, Liu C, Khan MS, Wang Q, Qi JN, Wei Q, Du B (2017) A bio-chemical application of N-GQDs and g-C3N4 QDs sensitized TiO2 nanopillars for the quantitative detection of pcDNA3-HBV. Biosens Bioelectron 91:456–464

    Article  CAS  PubMed  Google Scholar 

  17. Ribeiro T, Baleizão C, Farinha JPS (2017) Artefact-free evaluation of metal enhanced fluorescence in silica coated gold nanoparticles. Sci Rep 7(1):2440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yan Y, Meng LY, Zhang WQ, Zheng Y, Wang S, Ren B, Yang ZL, Yan XM (2017) High-throughput single-particle analysis of metal-enhanced fluorescence in free solution using Ag@SiO2 Core-Shell nanoparticles. Acs Sensors 2(9):1369–1376

    Article  CAS  PubMed  Google Scholar 

  19. Tian T, Zhong YP, Deng C, Wang H, He Y, Ge YL, Song GW (2017) Brightly near-infrared to blue emission tunable silver-carbon dot nanohybrid for sensing of ascorbic acid and construction of logic gate. Talanta 162:135–142

    Article  CAS  PubMed  Google Scholar 

  20. Xu DD, Liu C, Li CY, Song CY, Kang YF, Qi CB, Lin Y, Pang DW, Tang HW (2017) Dual amplification fluorescence assay for alpha fetal protein utilizing Immuno-hybridization chain reaction and metal-enhanced fluorescence of carbon Nanodots. ACS Appl Mater Interfaces 9(43):37606–37614

    Article  CAS  PubMed  Google Scholar 

  21. Theodorou IG, Jawad ZAR, Qin H, Aboagye EO, Porter AE, Ryana MP, Xie F (2016) Significant metal enhanced fluorescence of Ag2S quantum dots in the second near-infrared window. Nanoscale 8(26):12869–12873

    Article  CAS  PubMed  Google Scholar 

  22. Zhan R, Fang Z, Liu B (2009) Naked-eye detection and quantification of heparin in serum with a cationic Polythiophene. Anal Chem 82(4):1326–1333

    Article  CAS  Google Scholar 

  23. Mulloy B, Hogwood J, Gray E, Lever R, Page CP (2016) Pharmacology of heparin and related drugs. Pharmacol Rev 68(1):76–141

    Article  PubMed  Google Scholar 

  24. Benjamin SS, Menachem MW, Muoi AT, Joshua H, Adam SE, David HA, Gregory WF (2016) Heparin-induced thrombocytopenia: a comprehensive clinical review. J Am Coll Cardiol 67(21):2519–2532

    Article  CAS  Google Scholar 

  25. Song WW, Li NB, Luo HQ (2012) Gemini surfactant applied to the heparin assay at the nanogram level by resonance Rayleigh scattering method. Anal Biochem 422(1):1–6

    Article  CAS  PubMed  Google Scholar 

  26. Mehta PK, Lee H, Lee KH (2017) Highly sensitive ratiometric detection of heparin and its oversulfated chondroitin sulfate contaminant by fluorescent peptidyl probe. Biosens Bioelectron 91:545–552

    Article  CAS  PubMed  Google Scholar 

  27. Li S, Huang P, Wu F (2017) Highly selective and sensitive detection of heparin based on competition-modulated assembly and disassembly of fluorescent gold nanoclusters. New J Chem 41(2):717–723

    Article  CAS  Google Scholar 

  28. Yang M, Chen J, Zhou H, Li W, Wang Y, Li J, Zhang C, Zhou C, Yu C (2016) Polycation-induced benzoperylene probe excimer formation and the ratiometric detection of heparin and heparinase. Biosens Bioelectron 75:404–410

    Article  CAS  PubMed  Google Scholar 

  29. Yan D, He Y, Ge YL, Song GW (2017) Fluorescence “turn on-off” detection of heparin and heparinase I based on the near-infrared emission polyethyleneimine capped Ag2S quantum dots. Sensors Actuators B Chem 240:863–869

    Article  CAS  Google Scholar 

  30. Wang K, Zhang XY, Zhang XQ, Yang B, Li Z, Zhang QS, Huang ZF, Wei Y (2015) One-pot preparation of cross-linked amphiphilic fluorescent polymer based on aggregation induced emission dyes.Colloids and Surfaces B: Biointerfaces 126:273–279

  31. Geng S, Lin SM, Liu SG, Zhang W, Li NB, Luo HQ (2016) Indirect detection of alcoholic strength in spirits by fluorescence method using the polyethyleneimine capped ZnO QDs. Sensors Actuators B Chem 236:591–596

    Article  CAS  Google Scholar 

  32. Girolami B, Girolami A (2006) Heparin-induced thrombocytopenia: a review. Semin Thromb Hemost 32(8):803–809

    Article  CAS  PubMed  Google Scholar 

  33. Ma SD, Chen YL, Jie F, Liu Juan J, Zuo XW, Chen XG (2016) One-step synthesis of water-dispersible and biocompatible silicon nanoparticles for selective heparin sensing and cell imaging. Anal Chem 88:10474–10481

    Article  CAS  PubMed  Google Scholar 

  34. Li S, Huang P, Wu FY (2017) Highly selective and sensitive detection of heparin based on competition-modulated assembly and disassembly of fluorescent gold nanoclusters. New J Chem 41:717–723

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Supported by National Natural Science Foundation of China (21707030) and Wuhan Youth Science and technology plan (2016070204010133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu He.

Ethics declarations

The author(s) declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 0.98 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Q., He, Y., Ge, Y. et al. Ultrasensitive detection of heparin by exploiting the silver nanoparticle-enhanced fluorescence of graphitic carbon nitride (g-C3N4) quantum dots. Microchim Acta 185, 332 (2018). https://doi.org/10.1007/s00604-018-2864-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2864-9

Keywords

Navigation