Skip to main content
Log in

Amorphous titania modified with boric acid for selective capture of glycoproteins

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Amorphous titania was modified with boric acid, and the resulting material was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction and X-ray photoelectron spectrometry. The new material, in contrast to conventional boronate affinity materials containing boronic acid ligands, bears boric acid groups. It is shown to exhibit high specificity for glycoproteins, and this was applied to design a method for solid phase extraction of glycoproteins as shown for ribonuclease B, horse radish peroxidase and ovalbumin. Glycoproteins were captured under slightly alkaline environment and released in acidic solutions. The glycoproteins extracted were detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The binding capacities for ribonuclease B, horse radish peroxidase and ovalbumin typically are 9.3, 26.0 and 53.0 mg ∙ g−1, respectively. The method was successfully applied to the selective enrichment of ovalbumin from egg white.

Schematic presentation of the capture of glycoproteins by amorphous titania modified with boric acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Furukawa K, Kobata A (1992) Protein glycosylation. Curr Opin Biotechnol 3:554–559

    Article  CAS  PubMed  Google Scholar 

  2. Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA (2001) Glycosylation and the immune system. Science 291:2370–2376

    Article  CAS  PubMed  Google Scholar 

  3. Gabius HJ (2011) Glycobiomarkers by glycoproteomics and glycan profiling (glycomics): emergence of functionality. Biochem Soc Trans 39:399–405

    Article  CAS  PubMed  Google Scholar 

  4. Zielinska DF, Gnad F, Wisnewski JR, Mann M (2010) Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141:897−907

    Article  CAS  PubMed  Google Scholar 

  5. Monzo A, Bonn GK, Guttman A (2007) Lectin-immobilization strategies for affinity purification and separation of glycoconjugates. TrAC Trends Anal Chem 26:423−432

    Article  CAS  Google Scholar 

  6. Zhang H, Li XJ, Martin DB, Aebersold R (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21:660−666

    Google Scholar 

  7. Zhang Y, Zhuang Y, Shen H, Chen X, Wang J (2017) A super hydrophilic silsesquioxane-based composite for highly selective adsorption of glycoproteins. Microchim Acta 184:1037–1044

    Article  CAS  Google Scholar 

  8. Guan F, Uboh CE, Soma LR, Birks E, Chen J, Mitchell J, You Y, Rudy J, Xu F, Li X, Mbuy G (2007) LC-MS/MS method for confirmation of recombinant human erythropoietin and darbepoetin alpha in equine plasma. Anal Chem 79:4627–4635

    Article  CAS  PubMed  Google Scholar 

  9. Li D, Chen Y, Liu Z (2015) Boronate affinity materials for separation and molecular recognition: structure, properties and applications. Chem Soc Rev 44:8097–8123

    Article  CAS  PubMed  Google Scholar 

  10. Li X, Pennington J, Stobaugh JF, Schoeich C (2008) Synthesis of sulfonamide- and sulfonyl-phenylboronic acid-modified silica phases for boronate affinity chromatography at physiological pH. Anal Biochem 372:227–236

    Article  CAS  PubMed  Google Scholar 

  11. Wulff G (1982) Selective binding to polymers via covalent bonds. The construction of chiral cavities as specific receptor sites. Pure Appl Chem 54:2093–2102

    Article  Google Scholar 

  12. Dowlut M, Hall DG (2006) An improved class of sugar-binding boronic acids, soluble and capable of complexing glycosides in neutral water. J Am Chem Soc 128:4226–4227

    Article  CAS  PubMed  Google Scholar 

  13. Lü C, Li H, Wang H, Liu Z (2013) Probing the interactions between boronic acids and cis-diol-containing biomolecules by affinity capillary electrophoresis. Anal Chem 85:2361–2369

    Article  CAS  PubMed  Google Scholar 

  14. Ren L, Liu Z, Liu Y, Dou P, Chen HY (2009) Ring-opening polymerization with synergistic co-monomers: access to a boronate-functionalized polymeric monolith for the specific capture of cis-diol-containing biomolecules under neutral conditions. Angew Chem Int Ed 48:6704–6707

    Article  CAS  Google Scholar 

  15. Espina-Benitez MB, Randon J, Demesmay C, Dugas V (2017) Back to BAC: insights into boronate affinity chromatography interaction mechanisms. Sep Purif Rev 00:1–15

    Google Scholar 

  16. Yang Q, Huang D, Zhou P (2014) Synthesis of a SiO2/TiO2 hybrid boronate affinity monolithic column for specific capture of glycoproteins under neutral conditions. Analyst 139:987–991

    Article  CAS  PubMed  Google Scholar 

  17. Yang Q, Huang D, Jin S, Zhou H, Zhou P (2013) One-step synthesis of an organic–inorganic hybrid boronate affinity monolithic column with synergistic co-monomers. Analyst 138:4752–4755

    Article  CAS  PubMed  Google Scholar 

  18. Wang ST, Chen D, Ding J, Yuan BF, Feng YQ (2013) Borated titania, a new option for the selective enrichment of cis-diol biomolecules. Chem Eur J 19:606–612

    Article  CAS  PubMed  Google Scholar 

  19. Li J, Xia S, Gao S (1995) FT-IR and Raman spectroscopic study of hydrated borates. Spectrochim Acta 51A:519–532

    Google Scholar 

  20. Feng N, Zheng A, Wang Q, Ren P, Gao X, Liu S, Shen Z, Chen T, Deng F (2011) Boron environments in B-doped and (B, N)-codoped TiO2 photocatalysts: a combined solid-state NMR and theoretical calculation study. J Phys Chem C 115:2709–2719

    Article  CAS  Google Scholar 

  21. Zhao W, Ma W, Chen C, Zhao J, Shuai Z (2004) Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation. J Am Chem Soc 126:4782–4783

    Article  CAS  PubMed  Google Scholar 

  22. Feng N, Wang Q, Zheng A, Zhang Z, Fan J, Liu SB, Amoureux JP, Deng F (2013) Understanding the high photocatalytic activity of (B, Ag)-codoped TiO2 under solar-light irradiation with XPS, solid-state NMR, and DFT calculations. J Am Chem Soc 135:1607–1616

    Article  CAS  PubMed  Google Scholar 

  23. Liu G, Zhao Y, Sun C, Li F, Lu GQ, Cheng H (2008) Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2. Angew Chem Int Ed 47:4516–4520

    Article  Google Scholar 

  24. Li L, Yang Y, Liu X, Fan R, Shi Y, Li S, Zhang L, Fan X, Tang P, Xu R, Zhang W, Wang Y, Ma L (2013) A direct synthesis of B-doped TiO2 and its photocatalytic performance on degradation of RhB. Appl Surf Sci 265:36–40

    Article  CAS  Google Scholar 

  25. Dong L, Feng S, Li S, Song P, Wang J (2015) Preparation of concanavalin A-chelating magnetic nanoparticles for selective enrichment of glycoproteins. Anal Chem 87:6849–6853

    Article  CAS  PubMed  Google Scholar 

  26. Bie Z, Chen Y, Ye J, Wang S, Liu Z (2015) Boronate-affinity glycan-oriented surface imprinting: a new strategy to mimic lectins for the recognition of an intact glycoprotein and its characteristic fragments. Angew Chem Int Ed 54:10211–10215

    Article  CAS  Google Scholar 

  27. Sun X, Ma R, Chen J, Shi Y (2017) Boronate-affinity based magnetic molecularly imprinted nanoparticles for the efficient extraction of the model glycoprotein horseradish peroxidase. Microchim Acta 184:3729–3737

    Article  CAS  Google Scholar 

  28. Jiang L, Messing ME, Ye L (2017) Temperature and pH dual-responsive core-brush nanocomposite for enrichment of glycoproteins. ACS Appl Mater Interfaces 9:8985–8995

    Article  CAS  PubMed  Google Scholar 

  29. Zhou C, Chen X, Du Z, Li G, Xiao X, Cai Z (2017) A hybrid monolithic column based on boronate-functionalized graphene oxide nanosheets for online specific enrichment of glycoproteins. J Chromatogr A 1498:90–98

    Article  CAS  PubMed  Google Scholar 

  30. Yang J, He X, Chen L, Zhang Y (2017) Thiol-yne click synthesis of boronic acid functionalized silica nanoparticle-graphene oxide composites for highly selective enrichment of glycoproteins. J Chromatogr A 1513:118–125

    Article  CAS  PubMed  Google Scholar 

  31. Wu Q, Jiang B, Weng Y, Liu J, Li S, Hu Y, Yang K, Liang Z, Zhang L, Zhang Y (2018) 3-Carboxybenzoboroxole functionalized polyethylenimine modified magnetic graphene oxide nanocomposites for human plasma glycoproteins enrichment under physiological condition. Anal Chem 90:2671–2677

    Article  CAS  PubMed  Google Scholar 

  32. Li D, Bie Z (2017) Branched polyethyleneimine-assisted boronic acid-functionalized magnetic nanoparticles for the selective enrichment of trace glycoproteins. Analyst 142:4494–4502

    Article  CAS  PubMed  Google Scholar 

  33. Su J, He X, Chen L, Zhang Y (2018) A combination of "thiol-ene" click chemistry and surface initiated atom transfer radical polymerization: fabrication of boronic acid functionalized magnetic graphene oxide composite for enrichment of glycoproteins. Talanta 180:54–60

    Article  CAS  PubMed  Google Scholar 

  34. Zhang D, Chen Q, Hu L, Chen X, Wang J (2015) Preparation of a cobalt mono-substituted silicotungstic acid doped with aniline for the selective adsorption of ovalbumin. J Mater Chem B 3:4363–4369

    Article  CAS  Google Scholar 

  35. Apostol I, Miller KJ, Ratto J, Kelner DN (2009) Comparison of different approaches for evaluation of the detection and quantitation limits of a purity method: a case study using a capillary isoelectrofocusing method for a monoclonal antibody. Anal Biochem 385:101−106

    Article  CAS  Google Scholar 

Download references

Funding

This work has been supported by the Natural Science Foundation of Hubei Province of China (no. 2014CFB179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhou.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 796 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, S., Liu, L. & Zhou, P. Amorphous titania modified with boric acid for selective capture of glycoproteins. Microchim Acta 185, 308 (2018). https://doi.org/10.1007/s00604-018-2824-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2824-4

Keywords

Navigation