Skip to main content
Log in

Poly(3,4-ethylenedioxythiophene) doped with engineered carbon quantum dots for enhanced amperometric detection of nitrite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical sensor for nitrite was fabricated by modifying a glassy carbon electrode (GCE) with the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) that is doped with carbon quantum dots (CQDs). The negatively charged CQDs were doped into PEDOT via electrodeposition to form a conducting polymer nanocomposite on the GCE. The electrode surface has a flake-like nanostructure and a large specific surface area. The elemental mapping analysis revealed that the CQDs are uniformly distributed across the whole nanocomposite. As a result of the superior catalytic activity of CQDs and the good conductivity of PEDOT, the modified GCE displays excellent electrocatalytic activity towards the oxidation of nitrite, and the oxidation peak current is ten times higher than that of a PEDOT modified GCE without CQDs. Under optimum conditions and at a working voltage of 0.80 V (vs. Ag/AgCl), the sensor has a linear response in the 0.5–1110 μM nitrite concentration range, and an 88 nM limit of detection (at S/N = 3). Three different electrodes prepared under the same experimental conditions were applied for the detection of nitrite, and the RSD was 3.1%. The same sensor was employed to quantify nitrite in three replicate measurements, and the RSD was 2.2%.

Poly(3,4-ethylenedioxythiophene) (PEDOT) was doped with carbon quantum dots and deposited on a glassy carbon electrode to obtain an amperometric sensor for nitrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sun S, Jiang K, Qian S, Wang Y, Lin H (2017) Applying carbon dots-metal ions ensembles as a multichannel fluorescent sensor array: detection and discrimination of phosphate anions. Anal Chem 89:5542–5548

    Article  CAS  PubMed  Google Scholar 

  2. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381

    Article  CAS  PubMed  Google Scholar 

  3. Ding CQ, Zhu AW, Tian Y (2013) Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Accounts Chem Res 47:20–30

    Article  CAS  Google Scholar 

  4. Wang J, Sheng Li R, Zhi Zhang H, Wang N, Zhang Z, Huang CZ (2017) Highly fluorescent carbon dots as selective and visual probes for sensing copper ions in living cells via an electron transfer process. Biosens Bioelectron 97:157–163

    Article  CAS  PubMed  Google Scholar 

  5. Zhu C, Yang G, Li H, Du D, Lin Y (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87:230–249

    Article  CAS  PubMed  Google Scholar 

  6. Wu Y, Liu X, Wu Q, Yi J, Zhang G (2017) Carbon nanodots-based fluorescent turn-on sensor array for biothiols. Anal Chem 89:7084–7089

    Article  CAS  PubMed  Google Scholar 

  7. Zhong Y, Li J, Jiao Y, Zuo G, Pan X, Su T, Dong W (2017) One-step synthesis of orange luminescent carbon dots for ag+ sensing and cell imaging. J Lumin 190:188–193

    Article  CAS  Google Scholar 

  8. Lan M, Zhang J, Chui Y-S, Wang P, Chen X, Lee C-S, Kwong H-L, Zhang W (2014) Carbon nanoparticle-based ratiometric fluorescent sensor for detecting mercury ions in aqueous media and living cells. ACS Appl Mater Inter 6:21270–21278

    Article  CAS  Google Scholar 

  9. Xu S, Su Z, Zhang Z, Nie Y, Wang J, Ge G, Luo X (2017) Rapid synthesis of nitrogen doped carbon dots and their application as a label free sensor array for simultaneous discrimination of multiple proteins. J Mater Chem B 5:8748–8753

    Article  CAS  Google Scholar 

  10. Lin Z, Xue W, Chen H, Lin J-M (2011) Peroxynitrous-acid-induced Chemiluminescence of fluorescent carbon dots for nitrite sensing. Anal Chem 83:8245–8251

    Article  CAS  PubMed  Google Scholar 

  11. Gao X, Du C, Zhuang Z, Chen W (2016) Carbon quantum dot-based nanoprobes for metal ion detection. J Mater Chem C 4:6927–6945

    Article  CAS  Google Scholar 

  12. Shao X, Gu H, Wang Z, Chai X, Tian Y, Shi G (2013) Highly selective electrochemical strategy for monitoring of cerebral Cu2+ based on a carbon dot-TPEA hybridized surface. Anal Chem 85:418–425

    Article  CAS  PubMed  Google Scholar 

  13. Dai H, Xu GF, Gong LS, Yang CP, Lin YY, Tong YJ, Chen JH, Chen GN (2012) Electrochemical detection of triclosan at a glassy carbon electrode modifies with carbon nanodots and chitosan. Electrochim Acta 80:362–367

    Article  CAS  Google Scholar 

  14. Jiang F, Yue R, Du Y, Xu J, Yang P (2013) A one-pot ‘green’ synthesis of Pd-decorated PEDOT nanospheres for nonenzymatic hydrogen peroxide sensing. Biosens Bioelectron 44:127–131

    Article  CAS  PubMed  Google Scholar 

  15. Anothumakkool B, Soni R, Bhange SN, Kurungot S (2015) Novel scalable synthesis of highly conducting and robust PEDOT paper for a high performance flexible solid supercapacitor. Energy Environ Sci 8:1339–1347

    Article  CAS  Google Scholar 

  16. Wang Q, Yun Y (2012) A nanomaterial composed of cobalt nanoparticles, poly(3,4-ethylenedioxythiophene) and graphene with high electrocatalytic activity for nitrite oxidation. Microchim Acta 177:411–418

    Article  CAS  Google Scholar 

  17. Cho SI, Lee SB (2008) Fast electrochemistry of conductive polymer nanotubes: synthesis, mechanism, and application. Accounts Chem Res 41:699–707

    Article  CAS  Google Scholar 

  18. Wang G, Han R, Feng X, Li Y, Lin J, Luo X (2017) A glassy carbon electrode modified with poly(3,4-ethylenedioxythiophene) doped with nano-sized hydroxyapatite for amperometric determination of nitrite. Microchim Acta 184:1721–1727

    Article  CAS  Google Scholar 

  19. Wang J, Xu G, Wang W, Xu S, Luo X (2015) Nitrite oxidation with copper-cobalt nanoparticles on carbon nanotubes doped conducting polymer PEDOT composite. Chem Asian J 10:1892–1897

    Article  CAS  PubMed  Google Scholar 

  20. Xu F, Liu Y, Ding G, Deng M, Chen S, Wang L (2014) Three dimensional macroporous poly(3,4-ethylenedioxythiophene) structure: electrodeposited preparation and sensor application. Electrochim Acta 150:223–231

    Article  CAS  Google Scholar 

  21. Wang W, Xu G, Cui XT, Sheng G, Luo X (2014) Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide. Biosens Bioelectron 58:153–156

    Article  CAS  PubMed  Google Scholar 

  22. Xu G, Li B, Cui XT, Ling L, Luo X (2013) Electrodeposited conducting polymer PEDOT doped with pure carbon nanotubes for the detection of dopamine in the presence of ascorbic acid. Sensor Actuat B: Chem 188:405–410

    Article  CAS  Google Scholar 

  23. Cui M, Song Z, Wu Y, Guo B, Fan X, Luo X (2016) A highly sensitive biosensor for tumor maker alpha fetoprotein based on poly(ethylene glycol) doped conducting polymer PEDOT. Biosens Bioelectron 79:736–741

    Article  CAS  PubMed  Google Scholar 

  24. Lin P, Chai F, Zhang R, Xu G, Fan X, Luo X (2016) Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) doped with gold nanoparticles, and its application to nitrite sensing. Microchim Acta 183:1235–1241

    Article  CAS  Google Scholar 

  25. Cui M, Huang J, Wang Y, Wu Y, Luo X (2015) Molecularly imprinted electrochemical sensor for propyl gallate based on PtAu bimetallic nanoparticles modified graphene-carbon nanotube composites. Biosens Bioelectron 68:563–569

    Article  CAS  PubMed  Google Scholar 

  26. Wang S, Liu M, He S, Zhang S, Lv X, Song H, Han J, Chen D (2018) Protonated carbon nitride induced hierarchically ordered Fe2O3/HC3N4/rGO architecture with enhanced electrochemical sensing of nitrite. Sensor Actuat B: Chem 260:490–498

    Article  CAS  Google Scholar 

  27. Pankratova N, Cuartero M, Cherubini T, Crespo GA, Bakker E (2017) In-line acidification for potentiometric sensing of nitrite in natural waters. Anal Chem 89:571–575

    Article  CAS  PubMed  Google Scholar 

  28. Zhu SJ, Meng QN, Wang L, Zhang JH, Song YB, Jin H, Zhang K, Sun HC, Wang HY, Yang B (2013) Highly Photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Edit 52:3953–3957

    Article  CAS  Google Scholar 

  29. Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, Li CM, Yu T (2013) Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Edit 52:7800–7804

    Article  CAS  Google Scholar 

  30. Zhang Y, Nie J, Wei H, Xu H, Wang Q, Cong Y, Tao J, Zhang Y, Chu L, Zhou Y, Wu X (2018) Electrochemical detection of nitrite ions using ag/cu/MWNT nanoclusters electrodeposited on a glassy carbon electrode. Sensor Actuat B: Chem 258:1107–1116

    Article  CAS  Google Scholar 

  31. Zhao Z, Xia Z, Liu C, Huang H, Ye W (2017) Green synthesis of Pd/Fe3O4 composite based on polyDOPA functionalized reduced graphene oxide for electrochemical detection of nitrite in cured food. Electrochim Acta 256:146–154

    Article  CAS  Google Scholar 

  32. Liu H, Guo K, Lv J, Gao Y, Duan C, Deng L, Zhu Z (2017) A novel nitrite biosensor based on the direct electrochemistry of horseradish peroxidase immobilized on porous Co3O4 nanosheets and reduced graphene oxide composite modified electrode. Sensor Actuat B: Chem 238:249–256

    Article  CAS  Google Scholar 

  33. Xu G, Liang S, Fan J, Sheng G, Luo X (2016) Amperometric sensing of nitrite using a glassy carbon electrode modified with a multilayer consisting of carboxylated nanocrystalline cellulose and poly (diallyldimethyl ammonium) ions in a PEDOT host. Microchim Acta 183:2031–2037

    Article  CAS  Google Scholar 

  34. Muthumariappan A, Govindasamy M, Chen SM, Sakthivel K, Mani V (2017) Screen-printed electrode modified with a composite prepared from graphene oxide nanosheets and Mn3O4 microcubes for ultrasensitive determination of nitrite. Microchim Acta 184:3625–3634

    Article  CAS  Google Scholar 

  35. Yang YJ, Li W (2014) CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Biosens Bioelectron 56:300–306

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from Natural Science Foundation of Shandong Province of China (ZR2017BB009), China Postdoctoral Science Foundation (2017M622151), Postdoctoral Innovation Project Special Foundation of Shandong Province of China (201703033) and the Taishan Scholar Program of Shandong Province of China (ts20110829).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiliang Luo.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

The online version of this article contains supplementary material including characterizations of CQDs and the modified electrodes as well as the optimizations, which is available to authorized users.

ESM 1

(DOCX 45.5 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, M., Li, Z., Li, Y. et al. Poly(3,4-ethylenedioxythiophene) doped with engineered carbon quantum dots for enhanced amperometric detection of nitrite. Microchim Acta 185, 249 (2018). https://doi.org/10.1007/s00604-018-2784-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2784-8

Keywords

Navigation