Skip to main content
Log in

Microwave-assisted synthesis of carbon dots for "turn-on" fluorometric determination of Hg(II) via aggregation-induced emission

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A fluorescent probe is presented for sensitive determination of Hg(II). It is based on aggregation induced enhancement effect (AIEE) of carbon dots co-doped with nitrogen and sulfur (N,S-CDs). The N,S-CDs were prepared by a one-pot microwave-assisted method using glycerol as the reaction solvent, and cystine as the source for C, N and S. The resulting CDs are well soluble in water and have a turn-on fluorescence response to Hg(II). The incubation time and ratio of raw materials were optimized. Fluorescence, best measured at excitation/emission wavelengths of 325/385 nm, increases linearly in the 1–75 μM Hg(II) concentration range, and the detection limit is 0.5 μM. The method performed successfully when detecting Hg(II) in spiked tap and lake waters, with recoveries between 92 and 106%.

Schematic presentation of the aggregation induced enhancement of the fluorescence of carbon dots co-doped with nitrogen and sulfur after addition of Hg(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kim KH, Kabir E, Jahan SA (2016) A review on the distribution of Hg in the environment and its human health impacts. J Hazard Mater 306:376–385

    Article  CAS  PubMed  Google Scholar 

  2. Margetinova J, Houserova-Pelcova P, Kuban V (2008) Speciation analysis of mercury in sediments, zoobenthos and river water samples by high-performance liquid chromatography hyphenated to atomic fluorescence spectrometry following preconcentration by solid phase extraction. Anal Chim Acta 615:115–123

    Article  CAS  PubMed  Google Scholar 

  3. Tuzen M (2003) Determination of heavy metals in fish samples of the middle Black Sea (Turkey) by graphite furnace atomic absorption spectrometry. Food Chem 80:119–123

    Article  CAS  Google Scholar 

  4. Vela NP, Olson LK, Caruso JA (1993) Elemental speciation with plasma mass spectrometry. Anal Chem 65:585A–597A

    Article  CAS  PubMed  Google Scholar 

  5. Zarlaida F, Adlim M (2017) Gold and silver nanoparticles and indicator dyes as active agents in colorimetric spot and strip tests for mercury(II) ions: a review. Microchim Acta 184:45–58

    Article  CAS  Google Scholar 

  6. Miao P, Han K, Tang Y, Wang B, Lin T, Cheng W (2015) Recent advances in carbon nanodots: synthesis, properties and biomedical applications. Nano 7:1586–1595

    CAS  Google Scholar 

  7. Liu Y, Deng M, Zhu T, Tang X, Han S, Huang W, Shi Y, Liu A (2017) The synthesis of water-dispersible zinc doped AgInS2 quantum dots and their application in Cu2+ detection. J Lumin 192:547–554

    Article  CAS  Google Scholar 

  8. Zhai Q, Xing H, Zhang X, Li J, Wang E (2017) Enhanced electrochemiluminescence behavior of gold-silver bimetallic nanoclusters and its sensing application for mercury(II). Anal Chem 89:7788–7794

    Article  CAS  PubMed  Google Scholar 

  9. Zhang N, Si Y, Sun Z, Chen L, Li R, Qiao Y, Wang H (2014) Rapid, selective, and ultrasensitive fluorimetric analysis of mercury and copper levels in blood using bimetallic gold-silver nanoclusters with “silver effect”-enhanced red fluorescence. Anal Chem 86:11714–11721

    Article  CAS  PubMed  Google Scholar 

  10. Guo Y, Zhang L, Zhang S, Yang Y, Chen X, Zhang M (2015) Fluorescent carbon nanoparticles for the fluorescent detection of metal ions. Biosens Bioelectron 63:61–71

    Article  CAS  PubMed  Google Scholar 

  11. Zhang J, Yu S-H (2016) Carbon dots: large-scale synthesis, sensing and bioimaging. Mater Today 19:382–393

    Article  CAS  Google Scholar 

  12. Wu Z, Feng M, Chen X, Tang X (2016) N-dots as a photoluminescent probe for the rapid and selective detection of Hg2+ and Ag+ in aqueous solution. J Mater Chem B 4:2086–2089

    Article  CAS  Google Scholar 

  13. Meng Q, Zhang F, Wang L, Xiang S, Zhu S, Zhang G, Zhang K, Yang B (2014) Facile fabrication of mesoporous N-doped Fe3O4@C nanospheres as superior anodes for Li-ion batteries. RSC Adv 4:713–716

    Article  CAS  Google Scholar 

  14. Luo J, Xie Z, Lam JW, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang B (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun:1740–1741

  15. Wang C, Jiang K, Xu Z, Lin H, Zhang C (2016) Glutathione modified carbon-dots: from aggregation-induced emission enhancement properties to a “turn-on” sensing of temperature/Fe3+ ions in cells. Inorg Chem Front 3:514–522

    Article  CAS  Google Scholar 

  16. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed Engl 49:6726–6744

    Article  CAS  PubMed  Google Scholar 

  17. Zhai XY, Zhang P, Liu CJ, Bai T, Li WC, Dai LM, Liu WG (2012) Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem Commun 48:7955–7957

    Article  CAS  Google Scholar 

  18. Bakhrou N, Lamaty F, Martinez J, Colacino E (2010) Ring-closing metathesis in glycerol under microwave activation. Tetrahedron Lett 51:3935–3937

    Article  CAS  Google Scholar 

  19. Hou J, Wang L, Zhang P, Xu Y, Ding L (2015) Facile synthesis of carbon dots in an immiscible system with excitation-independent emission and thermally activated delayed fluorescence. Chem Commun 51:17768–17771

    Article  CAS  Google Scholar 

  20. Wang Z, Long P, Feng Y, Qin C, Feng W (2017) Surface passivation of carbon dots with ethylene glycol and their high-sensitivity to Fe3+. RSC Adv 7:2810–2816

    Article  CAS  Google Scholar 

  21. Xue M, Zhang L, Zou M, Lan C, Zhan Z, Zhao S (2015) Nitro and sulfur co-doped carbon dots: a facile and green fluorescence probe for free chlorine. Sensors Actuators B Chem 219:50–56

    Article  CAS  Google Scholar 

  22. Hou J, Wang W, Zhou T, Wang B, Li H, Ding L (2016) Synthesis and formation mechanistic investigation of nitrogen-doped carbon dots with high quantum yields and yellowish-green fluorescence. Nano 8:11185–11193

    CAS  Google Scholar 

  23. Ahmed G, Laíño R, Calzón G, García M (2015) Highly fluorescent carbon dots as nanoprobes for sensitive and selective determination of 4-nitrophenol in surface waters. Microchim Acta 182:51–59

    Article  CAS  Google Scholar 

  24. Yu L, Zhang L, Ren G, Li S, Zhu B, Chai F, Qu F, Wang C, Su Z (2018) Multicolorful fluorescent-nanoprobe composed of Au nanocluster and carbon dots for colorimetric and fluorescent sensing Hg2+ and Cr6+. Sensors Actuators B Chem 262:678–686

  25. Xu X-Y, Yan B (2016) Fabrication and application of a ratiometric and colorimetric fluorescent probe for Hg2+ based on dual-emissive metal–organic framework hybrids with carbon dots and Eu3+. J Mater Chem C 4:1543–1549

    Article  CAS  Google Scholar 

  26. Xu H, Zhang K, Liu Q, Liu Y, Xie M (2017) Visual and fluorescent detection of mercury ions by using a dually emissive ratiometric nanohybrid containing carbon dots and CdTe quantum dots. Microchim Acta 184:1199–1206

    Article  CAS  Google Scholar 

  27. Tabaraki R, Sadeghinejad N (2018) Microwave assisted synthesis of doped carbon dots and their application as green and simple turn off–on fluorescent sensor for mercury (II) and iodide in environmental samples. Ecotox Environ Safe 153:101–106

    Article  CAS  Google Scholar 

  28. He J, Zhang H, Zou J, Liu L, Zhuang J, Xiao Y, Lei B (2016) Carbon dots-based fluorescent probe for “off-on” sensing of Hg(II) and I. Biosens Bioelectron 79:531–535

    Article  CAS  PubMed  Google Scholar 

  29. Yan F, Kong D, Luo Y, Ye Q, He J, Guo X, Chen L (2016) Carbon dots serve as an effective probe for the quantitative determination and for intracellular imaging of mercury(II). Microchim Acta 183:1611–1618

    Article  CAS  Google Scholar 

  30. Tang W, Wang Y, Wang P, Di J, Yang J, Wu Y (2016) Synthesis of strongly fluorescent carbon quantum dots modified with polyamidoamine and a triethoxysilane as quenchable fluorescent probes for mercury(II). Microchim Acta 183(9):2571–2578

    Article  CAS  Google Scholar 

  31. Liu R, Li H, Kong W, Liu J, Liu Y, Tong C, Zhang X, Kang Z (2013) Ultra-sensitive and selective Hg2+ detection based on fluorescent carbon dots. Mater Res Bull 48:2529–2534

    Article  CAS  Google Scholar 

  32. Lu Y-C, Chen J, Wang A-J, Bao N, Feng J-J, Wang W, Shao L (2015) Facile synthesis of oxygen and sulfur co-doped graphitic carbon nitride fluorescent quantum dots and their application for mercury(II) detection and bioimaging. J Mater Chem C 3:73–78

    Article  CAS  Google Scholar 

  33. He J, Zhang H, Zou J, Liu Y, Zhuang J, Xiao Y, Lei B (2016) Carbon dots-based fluorescent probe for "off-on" sensing of Hg(II) and I. Biosens Bioelectron 79:531–535

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Provincial Nature Science Foundation of Heilongjiang (Grant No. E2016039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan Ding or Yanhua Chen.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 65.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Li, H., Wang, B. et al. Microwave-assisted synthesis of carbon dots for "turn-on" fluorometric determination of Hg(II) via aggregation-induced emission. Microchim Acta 185, 252 (2018). https://doi.org/10.1007/s00604-018-2781-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2781-y

Keywords

Navigation