Skip to main content
Log in

Hyaluronic acid functionalized nanostructured sensing interface for voltammetric determination of microRNA in biological media with ultra-high sensitivity and ultra-low fouling

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical biosensor for the detection of microRNA was prepared via chemical grafting of a Methylene Blue labeled reporter (MB-Rep) duplex onto a nanostructured surface that was obtained by electrodeposition of cobalt oxide and poly(o-phenylenediamine). This is followed by the attachment of hyaluronic acid and gold nanoclusters. In the presence of the target (microRNA), the probe-target duplex and the MB-Rep hairpin are formed. These will displace the labeled reporter from the sensor surface, and this results in a decrease of the amperometric signal for MB at a typical working voltage of −0.28 V (vs. Ag/AgCl). The electrode modified with hyaluronic acid possesses a large electroactive surface area and an excellent antifouling property. This makes it useful for ultrasensitive quantitation of microRNA even in complex biological media. The sensor has a linear response in the 100 f. to 0.1 μM microRNA concentration range, and a 33.3 f. detection limit. It was successfully applied to the determination of microRNA in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hong C, Baek A, Hah SS et al (2016) Fluorometric detection of MicroRNA using isothermal gene amplification and graphene oxide. Anal Chem 88:2999–3003. https://doi.org/10.1021/acs.analchem.6b00046

    Article  CAS  Google Scholar 

  2. Li C, Li Z, Jia H, Yan J (2011) One-step ultrasensitive detection of microRNAs with loop-mediated isothermal amplification (LAMP). Chem Commun (Camb) 47:2595–2597. https://doi.org/10.1039/c0cc03957h

    Article  CAS  Google Scholar 

  3. Jia H, Li Z, Liu C, Cheng Y (2010) Ultrasensitive detection of microRNAs by exponential isothermal amplification. Angew Chemie - Int Ed 49:5498–5501. https://doi.org/10.1002/anie.201001375

    Article  CAS  Google Scholar 

  4. Shi C, Liu Q, Ma C, Zhong W (2014) Exponential strand-displacement amplification for detection of micrornas. Anal Chem 86:336–339. https://doi.org/10.1021/ac4038043

    Article  CAS  Google Scholar 

  5. Liu H, Li L, Duan L et al (2013) High specific and ultrasensitive isothermal detection of microRNA by padlock probe-based exponential rolling circle amplification. Anal Chem 85:7941–7947. https://doi.org/10.1021/ac401715k

    Article  CAS  Google Scholar 

  6. Wang XP, Yin BC, Wang P, Ye BC (2013) Highly sensitive detection of microRNAs based on isothermal exponential amplification-assisted generation of catalytic G-quadruplex DNAzyme. Biosens Bioelectron 42:131–135. https://doi.org/10.1016/j.bios.2012.10.097

    Article  Google Scholar 

  7. Zhang DY, Seelig G (2011) Dynamic DNA nanotechnology using strand-displacement reactions. Nat Chem 3:103–113. https://doi.org/10.1038/nchem.957

    Article  CAS  Google Scholar 

  8. Volinia S, Calin GA, Liu C-G et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. PNAS 103:2257–2261. https://doi.org/10.1073/pnas.0510565103

    Article  CAS  Google Scholar 

  9. Zhu S, Wu H, Wu F et al (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18:350–359. https://doi.org/10.1038/cr.2008.24

    Article  CAS  Google Scholar 

  10. Ikeda S, Kong SW, Lu J et al (2007) Altered microRNA expression in human heart disease:367–373. https://doi.org/10.1152/physiolgenomics.00144.2007

  11. Fiore R, Siegel G, Schratt G (2008) MicroRNA function in neuronal development, plasticity and disease. Biochim Biophys Acta - Gene Regul Mech 1779:471–478. https://doi.org/10.1016/j.bbagrm.2007.12.006

    Article  CAS  Google Scholar 

  12. Taganov KD, Boldin MP, Chang K-J, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103:12481–12486. https://doi.org/10.1073/pnas.0605298103

    Article  CAS  Google Scholar 

  13. Huang YL, Mo S, Gao ZF et al (2017) Amperometric biosensor for microRNA based on the use of tetrahedral DNA nanostructure probes and guanine nanowire amplification. Microchim Acta 184:2597–2604. https://doi.org/10.1007/s00604-017-2246-8

    Article  CAS  Google Scholar 

  14. Wang J, Lu Z, Tang H et al (2017) Multiplexed electrochemical detection of MiRNAs from sera of glioma patients at different stages via the novel conjugates of conducting magnetic microbeads and Diblock oligonucleotide-modified gold nanoparticles. Anal Chem 89:10834–10840. https://doi.org/10.1021/acs.analchem.7b02342

    Article  CAS  Google Scholar 

  15. Xu S, Gao T, Feng X et al (2016) Dual ligand co-functionalized fluorescent gold nanoclusters for the “turn on” sensing of glutathione in tumor cells. J Mater Chem B 4:1270–1275. https://doi.org/10.1039/c5tb02195b

    Article  CAS  Google Scholar 

  16. Zhou Y, Li B, Wang M et al (2017) Fluorometric determination of microRNA based on strand displacement amplification and rolling circle amplification. Microchim Acta 184. https://doi.org/10.1007/s00604-017-2450-6

  17. Das J, Ivanov I, Montermini L et al (2015) An electrochemical clamp assay for direct, rapid analysis of circulating nucleic acids in serum. Nat Chem 7:569–575. https://doi.org/10.1038/nchem.2270

    Article  CAS  Google Scholar 

  18. Koo KM, Carrascosa LG, Shiddiky MJA, Trau M (2016) Poly(a) extensions of miRNAs for amplification-free electrochemical detection on screen-printed gold electrodes. Anal Chem 88:2000–2005. https://doi.org/10.1021/acs.analchem.5b04795

    Article  CAS  Google Scholar 

  19. Jiang S, Cao Z (2010) Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 22:920–932. https://doi.org/10.1002/adma.200901407

    Article  CAS  Google Scholar 

  20. Leng C, Hung HC, Sun S et al (2015) Probing the surface hydration of nonfouling Zwitterionic and PEG materials in contact with proteins. ACS Appl Mater Interfaces 7:16881–16888. https://doi.org/10.1021/acsami.5b05627

    Article  CAS  Google Scholar 

  21. Yamanlar S, Sant S, Boudou T et al (2011) Surface functionalization of hyaluronic acid hydrogels by polyelectrolyte multilayer films. Biomaterials 32:5590–5599. https://doi.org/10.1016/j.biomaterials.2011.04.030

    Article  CAS  Google Scholar 

  22. Huang R, Liu X, Ye H et al (2015) Conjugation of hyaluronic acid onto surfaces via the interfacial polymerization of dopamine to prevent protein adsorption. Langmuir 31:12061–12070. https://doi.org/10.1021/acs.langmuir.5b02320

    Article  CAS  Google Scholar 

  23. Markham NR, Zuker M (2005) DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res 33:577–581. https://doi.org/10.1093/nar/gki591

    Article  Google Scholar 

  24. Su S, Wu Y, Zhu D et al (2016) On-electrode synthesis of shape-controlled hierarchical flower-like gold nanostructures for efficient interfacial DNA assembly and sensitive electrochemical sensing of MicroRNA. Small:3794–3801. https://doi.org/10.1002/smll.201601066

  25. Zhou W, Zhang J, Xue T et al (2008) Electrodeposition of ordered mesoporous cobalt hydroxide film from lyotropic liquid crystal media for electrochemical capacitors. J Mater Chem 18:905. https://doi.org/10.1039/b715070a

    Article  CAS  Google Scholar 

  26. Chou S-L, Wang J-Z, Liu H-K, Dou S-X (2008) Electrochemical deposition of porous co(OH)[sub 2] Nanoflake films on stainless steel mesh for flexible supercapacitors. J Electrochem Soc 155:A926. https://doi.org/10.1149/1.2988739

    Article  CAS  Google Scholar 

  27. Shang L, Dörlich RM, Brandholt S et al (2011) Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nano 3:2009. https://doi.org/10.1039/c0nr00947d

    CAS  Google Scholar 

  28. Simms GA, Padmos JD, Zhang P (2009) Structural and electronic properties of protein/thiolate-protected gold nanocluster with “staple” motif: a XAS, L-DOS, and XPS study. J Chem Phys 131. https://doi.org/10.1063/1.3268782

  29. Wang W, Cui M, Song Z, Luo X (2016) An antifouling electrochemical immunosensor for carcinoembryonic antigen based on hyaluronic acid doped conducting polymer PEDOT. RSC Adv 6:88411–88416. https://doi.org/10.1039/C6RA19169J

    Article  CAS  Google Scholar 

  30. Chen C-H, Luo S-C (2015) Tuning surface charge and morphology for the efficient detection of dopamine under the interferences of uric acid, ascorbic acid, and protein adsorption. ACS Appl Mater Interfaces 7:21931–21938. https://doi.org/10.1021/acsami.5b06526

    Article  CAS  Google Scholar 

  31. Li Y, Pu Q, Li J et al (2017) An “off-on” fluorescent switch assay for microRNA using nonenzymatic ligation-rolling circle amplification. Microchim Acta 184:4323–4330. https://doi.org/10.1007/s00604-017-2475-x

    Article  CAS  Google Scholar 

  32. Chi BZ, Liang RP, Bin QW et al (2017) Direct fluorescence detection of microRNA based on enzymatically engineered primer extension poly-thymine (EPEPT) reaction using copper nanoparticles as nano-dye. Biosens Bioelectron 87:216–221. https://doi.org/10.1016/j.bios.2016.08.042

    Article  CAS  Google Scholar 

  33. Xiong H, Zheng X (2017) Electrochemiluminescence based determination of micro-RNA using target-guided assembly of gold nanoparticles on an electrode modified with Nafion, carbon nanotubes and polyvinylpyrrolidone. Microchim Acta 184:1781–1789. https://doi.org/10.1007/s00604-017-2163-x

    Article  CAS  Google Scholar 

  34. Feng Q-M, Shen Y-Z, Li M-X et al (2016) Dual-wavelength Electrochemiluminescence Ratiometry based on resonance energy transfer between au nanoparticles functionalized g-C3N4 Nanosheet and Ru(bpy)3(2+) for microRNA detection. Anal Chem 88:937–944. https://doi.org/10.1021/acs.analchem.5b03670

    Article  CAS  Google Scholar 

  35. Tao Y, Yin D, Jin M et al (2017) Double-loop hairpin probe and doxorubicin-loaded gold nanoparticles for the ultrasensitive electrochemical sensing of microRNA. Biosens Bioelectron 96:99–105. https://doi.org/10.1016/j.bios.2017.04.040

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (21675093, 21422504,21505081), and the Taishan Scholar Program of Shandong Province of China (ts20110829).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiliang Luo.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 480 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Jayachandran, S., Li, M. et al. Hyaluronic acid functionalized nanostructured sensing interface for voltammetric determination of microRNA in biological media with ultra-high sensitivity and ultra-low fouling. Microchim Acta 185, 156 (2018). https://doi.org/10.1007/s00604-018-2694-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2694-9

Keywords

Navigation