Skip to main content
Log in

Colorimetric detection of genetically modified organisms based on exonuclease III-assisted target recycling and hemin/G-quadruplex DNAzyme amplification

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An isothermal colorimetric method is described for amplified detection of the CaMV 35S promoter sequence in genetically modified organism (GMO). It is based on (a) target DNA-triggered unlabeled molecular beacon (UMB) termini binding, and (b) exonuclease III (Exo III)-assisted target recycling, and (c) hemin/G-quadruplex (DNAzyme) based signal amplification. The specific binding of target to the G-quadruplex sequence-locked UMB triggers the digestion of Exo III. This, in turn, releases an active G-quadruplex segment and target DNA for successive hybridization and cleavage. The Exo III impellent recycling of targets produces numerous G-quadruplex sequences. These further associate with hemin to form DNAzymes and hence will catalyze H2O2-mediated oxidation of the chromogenic enzyme substrate ABTS2− causing the formation of a green colored product. This finding enables a sensitive colorimetric determination of GMO DNA (at an analytical wavelength of 420 nm) at concentrations as low as 0.23 nM. By taking advantage of isothermal incubation, this method does not require sophisticated equipment or complicated syntheses. Analyses can be performed within 90 min. The method also discriminates single base mismatches. In our perception, it has a wide scope in that it may be applied to the detection of many other GMOs.

An isothermal and sensitive colorimetric method is described for amplified detection of CaMV 35S promoter sequence in genetically modified organism (GMO). It is based on target DNA-triggered molecular beacon (UMB) termini-binding and exonuclease III assisted target recycling, and on hemin/G-quadruplex (DNAzyme) signal amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gilbert N (2013) A hard look at gm crops. Nature 497:24–26

    Article  CAS  Google Scholar 

  2. Kamle S, Ali S (2013) Genetically modified crops: detection strategies and biosafety issues. Gene 522:123–132

    Article  CAS  Google Scholar 

  3. Ruttink T, Morisset D, Van Droogenbroeck B, Lavrač N, Van Den Eede G, Žel J, De Loose M (2010) Knowledge-technology-based discovery of unauthorized genetically modified organisms. Anal Biol Chem 396:1951–1959

    Article  CAS  Google Scholar 

  4. Bustin S, Benes V, Garson J, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl M, Shipley G, Vandesompele J, Wittwer C (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  Google Scholar 

  5. Fu W, Zhu P, Wang C, Huang K, Du Z, Tian W, Wang Q, Wang H, Xu W, Zhu S (2015) A highly sensitive and specific method for the screening detection of genetically modified organisms based on digital PCR without pretreatment. Sci Rep 5:12715–12725

    Article  CAS  Google Scholar 

  6. Jiang X, Zhang H, Wu J, Yang X, Shao J, Qiu B, Lin Z, Chen G (2014) G-quadruplex DNA biosensor for sensitive visible detection of genetically modified food. Talanta 128:445–449

    Article  CAS  Google Scholar 

  7. Manzanares-Palenzuela C, Martín-Fernández B, López S, López-Ruiz B (2015) Electrochemical genosensors as innovative tools for detection of genetically modified organisms. Trac-trend Anal Chem 66:19–31

    Article  CAS  Google Scholar 

  8. Passamano M, Pighini M (2006) QCM DNA-sensor for GMOs detection. Sensors Actuators B 118:177–181

    Article  CAS  Google Scholar 

  9. Yoke-Kqueen C, Son R (2010) Surface plasmon resonance biosensor for real-time detection of genetically modified organisms. Food Res Int 17:477–483

    CAS  Google Scholar 

  10. Wu H, Liu Y, Wang H, Wu J, Zhu F, Zou P (2016) Label-free and enzyme-free colorimetric detection of microRNA by catalyzed hairpin assembly coupled with hybridization chain reaction. Biosens Bioelectron 81:303–308

    Article  CAS  Google Scholar 

  11. Xu M, He Y, Gao Z, Chen G, Tang D (2015) Isothermal cycling and cascade signal amplification strategy for ultrasensitive colorimetric detection of nucleic acids. Microchim Acta 182:449–454

    Article  CAS  Google Scholar 

  12. Lin Y, Zhang M, Yin B, Ye B (2012) Attomolar ultrasensitive microRNA detection by DNA-scaffolded silver-nanocluster probe based on isothermal amplification. Anal Chem 84:5165–5169

    Article  Google Scholar 

  13. Liu X, Shuai H, Liu Y, Huang K (2016) An electrochemical biosensor for DNA detection based on tungsten disulfide/multi-walled carbon nanotube composites and hybridization chain reaction amplification. Sensors Actuators B 235:603–613

    Article  CAS  Google Scholar 

  14. Song W, Zhang Q, Sun W (2015) Ultrasensitive detection of nucleic acids by template enhanced hybridization followed by rolling circle amplification and catalytic hairpin assembly. Chem Commun 51:2392–2395

    Article  CAS  Google Scholar 

  15. Li D, Cheng W, Yan Y, Zhang Y, Yin Y, Ju H, Ding S (2016) A colorimetric biosensor for detection of attomolar microRNA with a functional nucleic acid-based amplification machine. Talanta 146:470–476

    Article  CAS  Google Scholar 

  16. Cai Z, Chen Y, Lin C, Wu Y, Yang C, Wang Y, Chen X (2014) A dual-signal amplification method for the DNA detection based on exonuclease III. Biosens Bioelectron 61:370–373

    Article  CAS  Google Scholar 

  17. Huang Y, Gao Z, Luo H, Li N (2017) Sensitive detection of HIV gene by coupling exonuclease III-assisted target recycling and guanine nanowire amplification. Sensors Actuators B 238:1017–1023

    Article  CAS  Google Scholar 

  18. Xue Q, Lv Y, Cui H, Gu X, Zhang S, Liu J (2015) A DNA nanomachine based on rolling circle amplification-bridged two-stage exonuclease III-assisted recycling strategy for label-free multi-amplified biosensing of nucleic acid. Anal Chim Acta 856:103–109

    Article  CAS  Google Scholar 

  19. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymeraseScience. Science 249:505–510

    Article  CAS  Google Scholar 

  20. Ellington A, Szostak J (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  21. Tang L, Liu Y, Ali M, Kang D, Zhao W, Li J (2012) Colorimetric and ultrasensitive bioassay based on a dual-amplification system using aptamer and DNAzyme. Anal Chem 84:4711–4717

    Article  CAS  Google Scholar 

  22. Yang L, Du F, Chen G, Yasmeen A, Tang Z (2014) A novel colorimetric PCR-based biosensor for detection and quantification of hepatitis B virus. Anal Chim Acta 840:75–81

    Article  CAS  Google Scholar 

  23. Shimron S, Wang F, Orbach R, Willner I (2012) Amplified detection of DNA through the enzyme-free autonomous assembly of hemin/G-quadruplex DNAzyme nanowires. Anal Chem 84:1042–1048

    Article  CAS  Google Scholar 

  24. Hang H, Kwak CH, Kim G, Kim SM, Huh YS, Jeon T-J (2016) Identification of genetically modified DNA found in Roundup Ready soybean using gold nanoparticles. Microchim Acta 183:2649–2654

    Article  Google Scholar 

  25. Qiu B, Zhang Y, Lin Y, Lu Y, Lin Z, Wong K, Chen G (2013) A novel fluorescent biosensor for detection of target DNA fragment from the transgene cauliflower mosaic virus 35S promoter. Biosens Bioelectron 41:168–171

    Article  CAS  Google Scholar 

  26. Tam P (2015) Genetically modified organism (GMO) detection by biosensor based on SWCNT material. Curr Appl Phys 15:397–401

    Article  Google Scholar 

  27. Santago-Felipe S, Tortajada-Genaro LA, Puchades R, Maquieria A (2016) Parallel solid-phase isothermal amplification and detection of multiple DNA targets in microliter-sized wells of a digital versatile disc. Microchim Acta 183:1195–1202

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Project of Zhongshan Science and Technology Bureau (2015B1013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijia Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 244 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Wang, W., Dong, Q. et al. Colorimetric detection of genetically modified organisms based on exonuclease III-assisted target recycling and hemin/G-quadruplex DNAzyme amplification. Microchim Acta 185, 75 (2018). https://doi.org/10.1007/s00604-017-2618-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2618-0

Keywords

Navigation