Skip to main content
Log in

Duplex voltammetric immunoassay for the cancer biomarkers carcinoembryonic antigen and alpha-fetoprotein by using metal-organic framework probes and a glassy carbon electrode modified with thiolated polyaniline nanofibers

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This paper describes stable and highly dispersed aqueous colloids of polyaniline (PANI) nanofibers that were prepared by a chemical method and used to modify a glassy carbon electrode (GCE). The materials combines the good electrical conductivity and network structure of PANI nanofibers with the complexing capacity of mercaptosuccinic acid. The modified GCEs exhibit high sensitivity to Cd(II) and Pb(II) ions, with detection limits of 50 ng·L−1 and 200 ng·L−1, respectively. The modified GCE was applied to the simultaneous determination of the cancer biomarkers carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP) by using particles of metal-organic frameworks (MOFs) prepared from Pb(II) or Cd(II) and 2-aminoterephthalic acid. The particles are used as electrochemical labels for secondary anti-CEA and secondary anti-AFP antibody in a sandwich assay. The two ions in the MOFs labels on the secondary antibody can be detected best at voltages of −0.63 and −0.88 V (vs Ag/AgCl), respectively. The assay has a linear response in the 0.3 pg·mL−1 to 3 ng·mL−1 concentration range of both CEA and AFP, and the respective detection limits are 0.03 pg·mL−1 and 0.1 pg·mL−1. In our preception, this assay has a wide scope in that it may be applied to a variety of sandwich types of immunoassays.

Schematic of a duplex voltammetric immunoassay for carcinoembryonic antigen (CEA) and alpha-fetoprotein(AFP) using metal-organic framework probes and a glassy carbon electrode modified with thiolated polyaniline nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wu L, Qu XG (2015) Cancer biomarker detection: recent achievements and challenges. Chem Soc Rev 44:2963–2997. doi:10.1039/c4cs00370e

    Article  CAS  Google Scholar 

  2. Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA (2015) Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev 115:10530–10574. doi:10.1021/acs.chemrev.5b00321

    Article  CAS  Google Scholar 

  3. Lim SA, Ahmed MU (2016) Electrochemical immunosensors and their recent nanomaterial-based signal amplification strategies: a review. RSC Adv 6:24995–25014. doi:10.1039/c6ra00333h

    Article  CAS  Google Scholar 

  4. Dixit CK, Kadimisetty K, Otieno BA, Tang C, Malla S, Krause CE, Rusling JF (2016) Electrochemistry-based approaches to low cost, high sensitivity, automated, multiplexed protein immunoassays for cancer diagnostics. Analyst 141:536–547. doi:10.1039/c5an01829c

    Article  CAS  Google Scholar 

  5. Kokkinos C, Economou A, Prodromidis MI (2016) Electrochemical immunosensors: Critical survey of different architectures and transduction strategies. Trends Anal Chem 79:88–105. doi:10.1016/j.trac.2015.11.020

    Article  CAS  Google Scholar 

  6. Labib M, Sargent EH, Kelley SO (2016) Electrochemical methods for the analysis of clinically relevant biomolecules. Chem Rev 116:9001–9090. doi:10.1021/acs.chemrev. 6b00220

    Article  CAS  Google Scholar 

  7. Tang J, Tang DP (2015) Non-enzymatic electrochemical immunoassay using noble metal nanoparticles: a review. Microchim Acta 182:2077–2089. doi:10.1007/s00604-015-1567-8

    Article  CAS  Google Scholar 

  8. Zhu CZ, Yang GH, Li H, Du D, Lin YH (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87:230–249. doi:10.1021/ac5039863

    Article  CAS  Google Scholar 

  9. Hasanzadeh M, Shadjou N (2017) Advanced nanomaterials for use in electrochemical and optical immunoassays of carcinoembryonic antigen. A review. Microchim Acta 184:389–414. doi:10.1007/s00604-016-2066-2

    Article  CAS  Google Scholar 

  10. Lei J, Qian R, Ling P, Cui L, Ju H (2014) Design and sensing applications of metal–organic framework composites. Trends Anal Chem 58:71–78. doi:10.1016/j.trac.2014.02.012

    Article  CAS  Google Scholar 

  11. Yi FY, Chen DX, Wu MK, Han L, Jiang HL (2016) Chemical sensors based on metal–organic frameworks. Chem Plus Chem 81:675–690. doi:10.1002/cplu.201600137

    CAS  Google Scholar 

  12. Liu TZ, Hu R, Zhang X, Zhang KL, Liu Y, Zhang XB, Bai RY, Li DL, Yang YH (2016) Metal−organic framework nanomaterials as novel signal probe s for electron transfer mediated ultrasensitive electrochemical immunoassay. Anal Chem 88:12516–12523. doi:10.1021/acs.analchem.6b04191

    Article  CAS  Google Scholar 

  13. Huang J, Kaner RB (2004) Nanofiber formation in the chemical polymerization of aniline: a mechanistic study. Angew Chem 116:5941–5945. doi:10.1002/ange. 200460616

    Article  Google Scholar 

  14. Yang T, Guan Q, Li Q, Meng L, Wang L, Liu C, Jiao K (2013) Large-area, three-dimensional interconnected grapheme oxide intercalated with self-doped polyaniline nanofibers as a free-standing electrocatalytic platform for adenine and guanine. J Mater Chem B 1:2926–2933. doi:10.1039/c3tb20171

    Article  CAS  Google Scholar 

  15. Bansod BK, Kumar T, Thakur R, Rana S, Singh I (2017) A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens Bioelectron 94:443–455. doi:10.1016/j.bios.2017.03.031

    Article  CAS  Google Scholar 

  16. Lai GS, Yan F, Wu J, Leng C, Ju HX (2017) Ultrasensitive multiplexed immunoassay with electrochemical stripping analysis of silver nanoparticles catalytically deposited by gold nanoparticles and enzymatic reaction. Anal Chem 83:2726–2732. doi:10.1021/ac103283

    Article  Google Scholar 

  17. Wang D, Gan N, Zhou J, Xiong P, Cao YT, Li TH, Pan DD, Jiang S (2014) Signal amplification for multianalyte electrochemical immunoassay with bidirectional stripping voltammetry using metal-enriched polymer nanolabels. Sensors Actuators B Chem 197:244–253. doi:10.1016/j.snb.2014.03.011

    Article  CAS  Google Scholar 

  18. Qin XL, Wang LC, Xie QJ (2016) Sensitive bioanalysis based on in-situ droplet anodic stripping voltammetric detection of CdS quantum dots label after enhanced cathodic preconcentration. Sensors 16:1342. doi:10.3390/s16091342

    Article  Google Scholar 

  19. Taleat Z, Khoshroo A, Mazloum-Ardakani M (2014) Screen-printed electrodes for biosensing: a review (2008–2013). Microchim Acta 181:865–891. doi:10.1007/s00604-014-1181-1

    Article  CAS  Google Scholar 

  20. Zhang ZH, Duan FH, He LH, Peng DL, Yan FF, Wang MH, Zong W, Jia CX (2016) Electrochemical clenbuterol immunosensor based on a gold electrode modified with zinc sulfide quantum dots and polyaniline. Microchim Acta 183:1089–1097. doi:10.1007/s00604-015-1730-2

    Article  CAS  Google Scholar 

  21. Blomquist M, Bobacka J, Ivaska A, Levon K (2013) Electrochemical and spectroscopic study on thiolation of polyaniline. Electrochim Acta 90:604–614. doi:10.1016/j.electacta. 2012.11.134

    Article  CAS  Google Scholar 

  22. Liu Y, Su ZH, Zhang Y, Chen L, Gu TA, Huang SY, Liu Y, Sun LG, Xie QJ, Yao SZ (2013) Amperometric determination of ascorbic acid using multiwalled carbon nanotube-thiolated polyaniline composite modified glassy carbon electrode. J Electroanal Chem 709:19–25. doi:10.1016/j.jelechem.2013.09.027

    Article  CAS  Google Scholar 

  23. Wang P, Du ML, Zhang M, Zhu H, Bao SY, Zou ML, Yang TT (2014) Facile fabrication of AuNPs/PANI/HNTs nanostructures for high-performance electrochemical sensors towards hydrogen peroxide. Chem Eng J 248:307–314. doi:10.1016/j.cej.2014.03.044

    Article  CAS  Google Scholar 

  24. Radhakrishnan S, Krishnamoorthy K, Sekar C, Wilsonand J, Kim SJ (2015) A promising electrochemical sensing platform based on ternary composite of polyaniline–Fe2O3–reduced graphene oxide for sensitive hydroquinone determination. Chem Eng J 259:594–602. doi:10.1016/j.cej.2014.08.047

    Article  CAS  Google Scholar 

  25. Li D, Kaner RB (2005) Processable stabilizer-free polyaniline nanofiber aqueous colloids. Chem Commun 3286–3288. doi:10.1039/b504020e

  26. Verrall KE, Warwich P, Fairhurst AJ (1999) Application of the Schulze-Hardy rule to haematite and haematite/humate colloid stability. Colloids Surf A Physicochem Eng Asp 150:261–273. doi:10.1016/s0927-7757(98)00858-9

    Article  CAS  Google Scholar 

  27. Lu X, Shan D, Yang J, Huang B, Zhou X (2013) Determination of m-dinitrobenzene based on novel type of sensor using thiol-porphyrin mixed monolayer-tethered polyaniline with intercalating fullerenols. Talanta 115:457–461. doi:10.1016/j.talanta. 2013.06.002

    Article  CAS  Google Scholar 

  28. He BS (2017) Differential pulse voltammetric assay for the carcinoembryonic antigen using a glassy carbon electrode modified with layered molybdenum selenide, graphene, and gold nanoparticles. Microchim Acta 184:229–235. doi:10.1007/s00604-016-2006-1

    Article  CAS  Google Scholar 

  29. Miao LY, Jiao L, Zhang J, Li H (2017) Amperometric sandwich immunoassay for the carcinoembryonic antigen using a glassy carbon electrode modified with iridium nanoparticles, polydopamine and reduced graphene oxide. Microchim Acta 184:169–175. doi:10.1007/s00604-016-2010-5

    Article  CAS  Google Scholar 

  30. Sun XT, Hui N, Luo XL (2017) Reagentless and label-free voltammetric immunosensor for carcinoembryonic antigen based on polyaniline nanowires grown on porous conducting polymer composite. Microchim Acta 184:889–896. doi:10.1007/s00604-016-2068-0

    Article  CAS  Google Scholar 

  31. Liu Q, Liu XP, Wei YP, Mao CJ, Niu HL, Song JM, Jin BK, Zhang SY (2017) Electrochemiluminescence immunoassay for the carcinoembryonic antigen using CdSe:Eu nanocrystals. Microchim Acta 184:1353–1360. doi:10.1007/s00604-017-2114-6

    Article  CAS  Google Scholar 

  32. Chen X, Jia XL, Han JM, Ma J, Ma ZF (2013) Electrochemical immunosensor for simultaneous detection of multiplex cancer biomarkers based on grapheme nanocomposites. Biosens Bioelectron 50:356–361. doi:10.1016/j.bios.2013.06.054

    Article  CAS  Google Scholar 

  33. Kong FY, Xu BY, Xu JJ, Chen HY (2013) Simultaneous electrochemical immunoassay using CdS/DNA and PbS/DNA nanochains as labels. Biosens Bioelectron 39:177–182. doi:10.1016/j.bios.2012.07.023

    Article  CAS  Google Scholar 

  34. Wang ZF, Liu N, Ma ZF (2014) Platinum porous nanoparticles hybrid with metal ions as probes for simultaneous detection of multiplex cancer biomarkers. Biosens Bioelectron 53:324–329. doi:10.1016/j.bios.2013.10.009

    Article  CAS  Google Scholar 

  35. Feng DX, Li LH, Han XW, Fang X, Li XZ, Zhang YZ (2014) Simultaneous electrochemical detection of multiple tumor markers using functionalized graphene nanocomposites as non-enzymatic labels. Sensors Actuators B Chem 201:360–368. doi:10.1016/j.snb.2014.05.015

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (21575080, 21275091and 21175084), and the National Research Foundation for the Doctoral Program of Higher Education of China (20120131110009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dazhong Shen or Houyi Ma.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 1243 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Huang, H., Wang, N. et al. Duplex voltammetric immunoassay for the cancer biomarkers carcinoembryonic antigen and alpha-fetoprotein by using metal-organic framework probes and a glassy carbon electrode modified with thiolated polyaniline nanofibers. Microchim Acta 184, 4037–4045 (2017). https://doi.org/10.1007/s00604-017-2437-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2437-3

Keywords

Navigation