Skip to main content
Log in

Potential-resolved electrochemiluminescence immunoassay for simultaneous determination of CEA and AFP tumor markers using dendritic nanoclusters and Fe3O4@SiO2 nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A potential-resolved electrochemiluminescence (ECL) immunoassay is presented for the simultaneous determination of the tumor markers alpha-fetoprotein (AFP) and carcinoembryonic antigen (CEA). It is making use of polyamidoamine dendrimer - quantum dots (PAMAM–QDs) and PAMAM-luminol as the signal probes and Fe3O4-SiO2 as a magnetic bead. The QDs of type CdTe@CdS and luminol in the presence of H2O2 generate ECL at an applied voltage of −1.12 V and +0.6 V (vs Ag/AgCl), respectively. The sensitivity of the method can be enhanced by using PAMAM dendrimers as a carrier for immobilizing the QDs. The assay is performed in a sandwich format, and AFP and CEA can be quantified via potential cycling from +0.6 to −1.4 V. Both tumor markers can be detected by this method in the 0.25 fg.mL−1 to 20 pg.mL−1 concentration range with a detection limit as low as 0.10 fg.mL−1. The assay was applied to the determination of both AFP and CEA in (spiked) human serum samples, and the results were found to be in acceptable agreement with the those obtained with an ELISA.

Schematic presentation of the ECL emission mechanism of CdTe@CdS QDs and luminol in the presence of the co-reactant H2O2 in a single potential scan are shown. The performance of the immunosensing system was improved by applying of PAMAM dendrimers and Fe3O4@SiO2 nanoparticles and were applied to sensing the different concentration of CEA and AFP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shan J, Ma Z (2017) A review on amperometric immunoassays for tumor markers based on the use of hybrid materials consisting of conducting polymers and noble metal nanomaterials. Microchim Acta 184:969–979. doi:10.1007/s00604-017-2146-y

    Article  CAS  Google Scholar 

  2. Wu M, Shi H, He L, Xu J, Chen H (2012) Microchip device with 64-site electrode array for multiplexed immunoassay of cell surface antigens based on electrochemiluminescence resonance energy transfer. Anal Chem 84:4207–4213. doi:10.1021/ac300551e

    Article  CAS  Google Scholar 

  3. Tang J, Tang D, Niessner R, Chen G, Knopp D (2011) Magneto-controlled graphene immunosensing platform for simultaneous multiplexed electrochemical immunoassay using distinguishable signal tags. Anal Chem 83:5407–5414. doi:10.1021/ac200969w

    Article  CAS  Google Scholar 

  4. Lai G, Wu J, Ju H, Yan F (2011) Streptavidin-functionalized silver-Nnanoparticle- enriched carbon nanotube tag for ultrasensitive multiplexed detection of tumor markers. Adv Funct Mater 21:2938–2943. doi:10.1002/adfm.201100396

    Article  CAS  Google Scholar 

  5. Tian J, Zhou L, Zhao Y, Wang Y, Peng Y, Zhao S (2012) Multiplexed detection of tumor markers with multicolor quantum dots based on fluorescence polarization immunoassay. Talanta 92:72–77. doi:10.1016/j.talanta.2012.01.051

    Article  CAS  Google Scholar 

  6. Kong F, Xu B, Xu J, Chen H (2013) Simultaneous electrochemical immunoassay using CdS/DNA and PbS/DNA nanochains as labels. Biosens Bioelectron 39:177–182. doi:10.1016/j.bios.2012.07.023

    Article  CAS  Google Scholar 

  7. Qian J, Dai H, Pan X, Liu S (2011) Simultaneous detection of dual proteins using quantum dots coated silica nanoparticles as labels. Biosens Bioelectron 28:314–319. doi:10.1016/j.bios.2011.07.045

    Article  CAS  Google Scholar 

  8. Yang Z, Zong C, Yan F, Ju H (2010) Automated chemiluminescent dual-analyte immunoassay based on resolved immunosensing channels. Talanta 82:1462–1467. doi:10.1016/j.talanta.2010.07.018

    Article  CAS  Google Scholar 

  9. Han F, Jiang H, Fang D, Jiang D (2014) Potential-resolved electrochemiluminescence for determination of two antigens at the cell surface. Anal Chem 86:6896–6902. doi:10.1021/ac501571a

    Article  CAS  Google Scholar 

  10. Swanick KN, Sandroni M, Ding Z, Zysman-Colman E (2015) Enhanced electrochemiluminescence from a stoichiometric ruthenium(II)–iridium(III) complex soft salt. E Chem Eur J 21:7435–7440. doi:10.1002/chem.201406533

    Article  CAS  Google Scholar 

  11. Liang W, Fan C, Zhuo Y, Zheng Y, Xiong C, Chai Y, Yuan R (2016) Multiparameter analysis-based electrochemiluminescent assay for simultaneous detection of multiple biomarker proteins on a single interface. Anal Chem 88:4940–4948. doi:10.1021/acs.analchem.6b00878

    Article  CAS  Google Scholar 

  12. Valenti G, Zangheri M, Sansaloni SE, Mirasoli M, Penicaud A, Roda A, Paolucci F (2015) Transparent carbon nanotube network for efficient electrochemiluminescence devices. Chem Eur J 21:12640–12645. doi:10.1002/chem.201501342

    Article  CAS  Google Scholar 

  13. Ding Z (2002) Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296:1293–1297. doi:10.1126/science.1069336

    Article  CAS  Google Scholar 

  14. Dong YP, Gao TT, Zhou Y, Zhu JJ (2014) Electrogenerated chemiluminescence resonance energy transfer between luminol and CdSe@ZnS quantum dots and its sensing application in the determination of thrombin. Anal Chem 86:11373–11379. doi:10.1021/ac5033319

    Article  CAS  Google Scholar 

  15. Xu S, Liu Y, Wang T, Li J (2010) Highly sensitive electrogenerated chemiluminescence biosensor in profiling protein kinase activity and inhibition using gold nanoparticle as signal transduction probes. Anal Chem 82:9566–9572. doi:10.1021/ac102296g

    Article  CAS  Google Scholar 

  16. Jiang X, Wang H, Yuan R, Chai Y (2015) Sensitive electrochemiluminescence detection for CA15-3 based on immobilizing luminol on dendrimer functionalized ZnO nanorods. Biosens Bioelectron 63:33–38. doi:10.1016/j.bios.2014.07.009

    Article  CAS  Google Scholar 

  17. Jiang X, Chai Y, Wang H, Yuan R (2014) Electrochemiluminescence of luminol enhanced by the synergetic catalysis of hemin and silver nanoparticles for sensitive protein detection. Biosens Bioelectron 54:20–26. doi:10.1016/j.bios.2013.10.006

    Article  CAS  Google Scholar 

  18. Zhang H, Wu M, Xu J, Chen H (2014) Signal-on dual-potential electrochemiluminescence based on luminol–gold bifunctional nanoparticles for telomerase detection. Anal Chem 86:3834–3840. doi:10.1021/ac403960g

    Article  CAS  Google Scholar 

  19. Hao N, Li X, Zhang H, Xu J, Chen H (2014) A highly sensitive ratiometric electrochemiluminescent biosensor for microRNA detection based on cyclic enzyme amplification and resonance energy transfer. Chem Commun 50:1482814830. doi:10.1039/C4CC06801G

    Google Scholar 

  20. Bauza C, Iban GA, Tauler R, Olivieri AC (2012) Sensitivity equation for quantitative analysis with multivariate curve resolution-alternating least-squares: theoretical and experimental approach. Anal Chem 84:8697–8706. doi:10.1021/ac3019284

    Article  CAS  Google Scholar 

  21. Jie G, Zhang J, Jie G, Wang L (2014) A novel quantum dot nanocluster as versatile probe for electrochemiluminescence and electrochemical assays of DNA and cancer cells. Biosens Bioelectron 52:69–75. doi:10.1016/j.bios.2013.08.006

    Article  CAS  Google Scholar 

  22. Kavosi B, Salimi A, Hallaj R, Amani K (2014) A highly sensitive prostate-specific antigen immunosensor based on gold nanoparticles/PAMAM dendrimer loaded on MWCNTS/chitosan/ionic liquid nanocomposite. Biosens Bioelectron 52:20–28. doi:10.1016/j.bios.2013.08.012

    Article  CAS  Google Scholar 

  23. Kavosi B, Salimi A, Hallaj R, Moradi F (2015) Ultrasensitive electrochemical immunosensor for PSA biomarker detection in prostate cancer cells using gold nanoparticles/PAMAM dendrimer loaded with enzyme linked aptamer as integrated triple signal amplification strategy. Biosens Bioelectron 74:915–923. doi:10.1016/j.bios.2015.07.064

    Article  CAS  Google Scholar 

  24. Qaddareh SH, Salimi A (2016) Amplified fluorescent sensing of DNA using luminescent carbon dots and AuNPs/GO as a sensing platform: a novel coupling of FRET and DNA hybridization for homogeneous HIV-1 gene detection at femtomolar leve. Biosens Bioelectron 89:773–780. doi:10.1016/j.bios.2016.10.033

    Article  Google Scholar 

  25. Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244. doi:10.1002/anie.200602866

    Article  CAS  Google Scholar 

  26. Zhang Y, Ge S, Wang S, Yan M, Yu J, Song X, Liu W (2012) Magnetic beads-based electrochemiluminescence immunosensor for determination of cancer markers using quantum dot functionalized PtRu alloys as labels. Analyst 137:2176–2182. doi:10.1039/C2AN16170B

    Article  CAS  Google Scholar 

  27. Deng Z, Schulz O, Lin S, Ding B, Liu X, Wei X, Ros R (2010) Aqueous synthesis of zinc blende CdTe/CdS magic-core/thick-shell tetrahedral-shaped nanocrystals with emission tunable to near-infrared. J Am Chem Soc 132:559–5593. doi:10.1021/ja101476b

    Google Scholar 

  28. Jie G, Wang L, Yuan J, Zhang S (2011) Electrochemiluminescence assays for cancer cells based on dendrimer/CdSe–ZnS–quantum dot Nnanoclusters. Anal Chem 83:3873–3880. doi:10.1021/ac200383z

    Article  CAS  Google Scholar 

  29. Nigam S, Barick KC, Bahadur D (2011) Development of citrate-stabilized Fe3O4 nanoparticles: conjugation and release of doxorubicin for therapeutic applications. J M Magn Mater 323:237–243. doi:10.1016/j.jmmm.2010.09.009

    Article  CAS  Google Scholar 

  30. Chang Q, Tang H (2014) Immobilization of horseradish peroxidase on NH2-modified magnetic Fe3O4/SiO2 Pparticles and its application in removal of 2,4-dichlorophenol. Molecules 19:15768–15782. doi:10.3390/molecules191015768

    Article  CAS  Google Scholar 

  31. Mei YL, Wang HS, Li YF, Pan ZY, Jia WL (2010) Electochemiluminescence of CdTe/CdS quantum dots with triproprylamine as coreactant in aqueous solution at a lower potential and its application for highly sensitive and selective detection of Cu2+. Electroanalysis 22:155–160. doi:10.1002/elan.200904685

    Article  CAS  Google Scholar 

  32. Liu N, Feng F, Liu Z, Ma Z (2015) Porous platinum nanoparticles and PdPt nanocages for use in an ultrasensitive immunoelectrode for the simultaneous determination of the tumor markers CEA and AFP. Microchim Acta 182:1143–1151. doi:10.1007/s00604-014-1435-y

    Article  CAS  Google Scholar 

  33. Jia X, Liu Z, Ma Z (2014) A label-free immunosensor based on graphene nanocomposites for simultaneous multiplexed electrochemical determination of tumor markers. Biosens Bioelectron 53:160–166. doi:10.1016/j.bios.2013.09.050

    Article  CAS  Google Scholar 

  34. Liu N, Ma Z (2013) Au–ionic liquid functionalized reduced graphene oxide immunosensing platform for simultaneous electrochemical detection of multiple analytes. Biosens Bioelectron 51:184–190. doi:10.1016/j.bios.2013.07.051

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Iranian Nanotechnology Initiative and the Research Office of the University of Kurdistan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rahman Hallaj or Abdollah Salimi.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babamiri, B., Hallaj, R., Salimi, A. et al. Potential-resolved electrochemiluminescence immunoassay for simultaneous determination of CEA and AFP tumor markers using dendritic nanoclusters and Fe3O4@SiO2 nanoparticles. Microchim Acta 184, 3613–3623 (2017). https://doi.org/10.1007/s00604-017-2386-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2386-x

Keywords

Navigation