Skip to main content
Log in

Boronate-affinity based magnetic molecularly imprinted nanoparticles for the efficient extraction of the model glycoprotein horseradish peroxidase

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

An Erratum to this article was published on 01 August 2017

This article has been updated

Abstract

Magnetic molecularly imprinted nanoparticles (MMIPs) with improved dispersity and an increased number of adsorption sites are described. Uniform silica layers were first deposited on the surface of Fe3O4 nanoparticles (Fe3O4 NPs) in order to improve the dispersity of magnetic nanoparticles. Then, 4-formylphenylboronic acid (FPBA) as functional monomer was immobilized on the magnetic carriers to improve the efficiency of template eluting and rebinding. A thin layer of polyaniline imprinted with horseradish peroxidase (HRP) as a model glycoprotein was then placed on the magnetic nanoparticles to enhance the dispersity of the resultant MMIPs. These exhibit high adsorption capacity (62 mg g−1), a satisfactory imprinting factor ( 3.78) and short adsorption equilibrium time (40 min) toward HRP, and the limit of detection is 18.7 μg L−1. This kind of MMIPs, therefore, is deemed being a useful tool for extracting low-abundance glycoproteins from even complex samples.

Schematic of the preparation of magnetic molecular imprinted nanoparticles using Fe3O4 nanoparticles as carriers, 4-formylphenylboronic acid as functional monomer, aniline as cross linker and horseradish peroxidase as template. TEOS: tetraethyl orthosilicate; APTES: 3-aminopropyltriethoxysilane; FPBA: 4-formylphenylboronic acid; HRP: horseradish peroxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 01 August 2017

    An erratum to this article has been published.

References

  1. Arnal-Estapé A, Nguyen DX (2015) Sweets for a bitter end: lung cancer cell–surface protein glycosylation mediates metastatic colonization. Cancer Discov 5(2):109–111

    Article  Google Scholar 

  2. Christiansen MN, Chik J, Lee L, Anugraham M, Abrahams JL, Packer NH (2014) Cell surface protein glycosylation in cancer. Proteomics 14(4–5):525–546

    Article  CAS  Google Scholar 

  3. Schedin-Weiss S, Winblad B, Tjernberg LO (2014) The role of protein glycosylation in Alzheimer disease. FEBS J 281(1):46–62

    Article  CAS  Google Scholar 

  4. Yang Q, Zhu Y, Luo B, Lan F, Wu Y, Gu ZW (2017) pH-responsive magnetic Nanospheres for reversibly selective capture and release of glycoproteins. J Mater Chem B 5(6):1236–1245

  5. Tan L, Che K, Huang C, Peng RF, Luo XY, Yang R, Tang YF (2015) A fluorescent turn-on detection scheme for α-fetoprotein using quantum dots placed in a boronate-modified molecularly imprinted polymer with high affinity for glycoproteins. Microchim Acta 182(15–16):2615–2622

    Article  CAS  Google Scholar 

  6. Zhang Y, Zhuang YT, Shen HY, Chen XW, Wang JH (2017) A super hydrophilic silsesquioxane-based composite for highly selective adsorption of glycoproteins. Microchim Acta 184(4):1037–1044

    Article  CAS  Google Scholar 

  7. Zhu J, Wang FJ, Chen R, Cheng K, Xu B, Guo ZM, Liang XM, Ye ML, Zou HF (2012) Centrifugation assisted microreactor enables facile integration of trypsin digestion, hydrophilic interaction chromatography enrichment, and on-column deglycosylation for rapid and sensitive N-glycoproteome analysis. Anal Chem 84(11):5146–5153

    Article  CAS  Google Scholar 

  8. Zhou YR, Aebersold R, Zhang H (2007) Isolation of N-linked Glycopeptides from plasma. Anal Chem 79(15):5826–5837

    Article  CAS  Google Scholar 

  9. Li HJ, Wang HY, Liu YC, Liu Z (2012) A benzoboroxole-functionalized monolithic column for the selective enrichment and separation of cis-diol containing biomolecules. Chem Commun 48(34):4115–4117

    Article  CAS  Google Scholar 

  10. Xue Y, Shi WJ, Zhu BJ, Gu X, Wang Y, Yan C (2015) Polyethyleneimine-grafted boronate affinity materials for selective enrichment of cis-diol-containing compounds. Talanta 140:1–9

    Article  CAS  Google Scholar 

  11. Lin Z, Sun LX, Liu W, Xia ZW, Yang HH, Chen GN (2014) Synthesis of boronic acid-functionalized molecularly imprinted silica nanoparticles for glycoprotein recognition and enrichment. J Mater Chem B 2(6):637–643

    Article  CAS  Google Scholar 

  12. Barahona F, Díaz-Álvarez M, Turiel E, Martín-Esteban A (2016) Molecularly imprinted polymer-coated hollow fiber membrane for the microextraction of triazines directly from environmental waters. J Chromatogr A 1442:12–18

    Article  CAS  Google Scholar 

  13. Hu X, Xie LW, Guo JF, Li H, Jiang XY, Zhang YP, Shi SY (2015) Hydrophilic gallic acid–imprinted polymers over magnetic mesoporous silica microspheres with excellent molecular recognition ability in aqueous fruit juices. Food Chem 179:206–212

    Article  CAS  Google Scholar 

  14. Nehme H, Nehme R, Lafite P, Routier S, Morin P (2012) New development in in-capillary electrophoresis techniques for kinetic and inhibition study of enzymes. Anal Chim Acta 722:127–135

    Article  CAS  Google Scholar 

  15. Li HF, Xie T, Ye LL, Wang YW, Xie CG (2017) Core-shell magnetic molecularly imprinted polymer nanoparticles for the extraction of triazophos residues from vegetables. Microchim Acta 184:1011–1019

    Article  CAS  Google Scholar 

  16. Altuna S, Cakıroglu B, Özacar M, Özacar M (2015) A facile and effective immobilization of glucose oxidase on tannic acid modified CoFe2O4 magnetic nanoparticles. Colloids Surf B 136:963–970

    Article  Google Scholar 

  17. Hou C, Qi ZG, Zhu H (2015) Preparation of core-shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization. Colloids Surf B 128:544–551

    Article  CAS  Google Scholar 

  18. Li QR, Yang KG, Li SW, Liu LK, Zhang LH, Liang Z, Zhang YK (2016) Preparation of surface imprinted core-shell particles via a metal chelating strategy: specific recognition of porcine serum albumin. Microchim Acta 183:345–352

    Article  CAS  Google Scholar 

  19. Hou C, Zhu H, Li YF, Li YJ, Wang XY, Zhu WW, Zhou RD (2015) Facile synthesis of oxidic PEG-modified magnetic polydopamine nanospheres for Candida rugosa lipase immobilization. Appl Microbiol Biotechnol 99(3):1249–1259

    Article  CAS  Google Scholar 

  20. Niu M, Pham-Huy C, He H (2016) Core-shell nanoparticles coated with molecularly imprinted polymers: a review. Microchim Acta 183(10):2677–2695

    Article  CAS  Google Scholar 

  21. Yin YQ, Xiao Y, Lin G, Xiao Q, Lin Z, Cai ZW (2015) An enzyme-inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity. J Mater Chem B 3(11):2295–2300

    Article  CAS  Google Scholar 

  22. Ma RT, Ha W, Chen J, Shi YP (2016) Highly dispersed magnetic molecularly imprinted nanoparticles with well-defined thin film for the selective extraction of glycoprotein. J Mater Chem B 4(15):2620–2627

    Article  CAS  Google Scholar 

  23. Royvaran M, Taheri-Kafrani A, Isfahani AL, Mohammadi S (2016) Functionalized superparamagnetic graphene oxide nanosheet in enzyme engineering: a highly dispersive, stable and robust biocatalyst. Chem Eng J 288:414–422

    Article  CAS  Google Scholar 

  24. Unsoy G, Yalcin S, Khodadust R, Gunduz G, Gunduz U (2012) Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications. J Nanopart Res 14(11):1–13

    Article  Google Scholar 

  25. Betancor L, López-Gallego F, Hidalgo A, Alonso-Morales N, Mateo GDOC, Fernández-Lafuente R, Guisán JM (2006) Different mechanisms of protein immobilization on glutaraldehyde activated supports: effect of support activation and immobilization conditions. Enzyme Microb Technol 39(4):877–882

    Article  CAS  Google Scholar 

  26. Deng H, Li X, Peng Q, Wang X, Chen J, Li Y (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem 117(18):2842–2845

    Article  Google Scholar 

  27. Pan C, Hu B, Li W, Sun Y, Ye H, Zeng X (2009) Novel and efficient method for immobilization and stabilization of β-d-galactosidase by covalent attachment onto magnetic Fe3O4-chitosan nanoparticles. J Mol Catal B 61(3):208–215

    Article  CAS  Google Scholar 

  28. Shao MF, Ning FY, Zhao JW, Wei M, Evans DG, Duan X (2012) Preparation of Fe3O4@SiO2@layered double hydroxide Core–Shell microspheres for magnetic separation of proteins. J Am Chem Soc 134(2):1071–1077

    Article  CAS  Google Scholar 

  29. Yang S, Zhang X, Zhao WT, Sun LQ, Luo AQ (2016) Preparation and evaluation of Fe3O4 nanoparticles incorporated molecularly imprinted polymers for protein separation. J Mater Sci 51(2):937–949

    Article  CAS  Google Scholar 

  30. Li YX, Chen YT, Huang L, Lou BY, Chen GN (2017) Creating BHb-imprinted magnetic nanoparticles with multiple binding sites. Analyst 142:302–309

    Article  CAS  Google Scholar 

  31. Zhang W, Liu W, Li P, Xiao HB, Wang H, Tang B (2014) A fluorescence nanosensor for glycoproteins with activity based on the molecularly imprinted spatial structure of the target and boronate affinity. Angew Chem 126(46):12697–12701

    Article  Google Scholar 

  32. Gao RX, Mu XR, Hao Y, Zhang LL, Zhang JJ, Tang YH (2014) Combination of surface imprinting and immobilized template techniques for preparation of core–shell molecularly imprinted polymers based on directly amino-modified Fe3O4 nanoparticles for specific recognition of bovine hemoglobin. J Mater Chem B 2(12):1733–1741

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from the National Natural Science Foundation of China (No. 21475142, 21611140105), CAS President’s International Fellowship Initiative (SL: 191), the funds for Distinguished Young Scientists of Gansu (1506RJDA281) and the top priority program of “One-Three-Five” Strategic Planning of Chinese Academy of Sciences are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Chen or Yan-Ping Shi.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s00604-017-2431-9.

Electronic supplementary material

ESM 1

(DOCX 606 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, XY., Ma, RT., Chen, J. et al. Boronate-affinity based magnetic molecularly imprinted nanoparticles for the efficient extraction of the model glycoprotein horseradish peroxidase. Microchim Acta 184, 3729–3737 (2017). https://doi.org/10.1007/s00604-017-2373-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2373-2

Keywords

Navigation