Skip to main content

Advertisement

Log in

Fluorescence based turn-on strategy for determination of microRNA-155 using DNA-templated copper nanoclusters

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors report on a new approach for the determination of the breast cancer biomarker microRNA-155 (miRNA-155). It is based on the measurement of the fluorescence shift of oligonucleotide-templated copper nanoclusters (DNA-CuNC). A probe DNA was designed that acts as a template for the preparation of CuNC which, under 400 nm excitation, exhibit strong fluorescence enhancement at 490 nm and a 90 nm Stokes shift after binding to target miRNA-155 and formation of a DNA-RNA heteroduplex. Under the optimal conditions, the fluorescence of the DNA-CuNC increases with increasing concentration of miRNA-155 in the range from 50 pM to 10 nM, with a 11 pM detection limit. The assay has excellent selectivity over noncomplementary RNA. The method was applied to the determination of miRNA-155 in the presence of human plasma and saliva.

Schematic of the detection strategy that relies on the fluorescence shift of DNA-CuNCs resulting from the specific binding of DNA-CuNCs with target miRNA-155. Fluorescence intensities are linearly proportional to the concentrations of target RNA from 50 pM to 10 nM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhu J, Zheng Z, Wang J, Sun J, Wang P, Cheng X, Fu L, Zhang L, Wang Z, Li Z (2014) Different miRNA expression profiles between human breast cancer tumors and serum. Front Genet 149. doi:10.3389/fgene.2014.00149

  2. Zhang GJ, Chua JH, Chee RE, Agarwal A, Wong SM (2009) Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosens Bioelectron 24:2504–2508

    Article  CAS  Google Scholar 

  3. Yang WJ, Li XB, Li YY, Zhao LF, He WL, Gao YQ, Wan YJ, Xia W, Chen T, Zheng H, Li M, Xu SQ (2008) Quantification of microRNA by gold nanoparticle probes. Anal Biochem 376:183–188

    Article  CAS  Google Scholar 

  4. Zhao SY, Wu Q, Gao F, Zhang CB, Yang XW (2012) Increased expression of MicroRNA-155 in the serum of women with early-stage breast cancer. Science 43:177–180

    Google Scholar 

  5. Wu X, Chai Y, Yuan R, Zhuo Y, Chen Y (2014) Dual signal amplification strategy for enzyme-free electrochemical detection of microRNAs. Sensors Actuators B Chem 203:296–302

    Article  CAS  Google Scholar 

  6. Schooneveld EV, Wildiers H, Vergote I, Vermeulen PB, Dirix LY, Van Laere SJ (2015) Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res 17:21

    Article  Google Scholar 

  7. McGuire A, Brown JAL, Kerin MJ (2015) Metastatic breast cancer: the potential of miRNA for diagnosis and treatment monitoring. Cancer Metastasis Rev 34:145–155

    Article  CAS  Google Scholar 

  8. Gurses HE, Hatipoglu OF, Gunduz M, Gunduz E (2015) MicroRNAs as therapeutic targets in human breast cancer. In: Gunduz M (ed) A concise review of molecular pathology of breast cancer, Chapter 5. InTech, Croatia, pp. 121–137

  9. V’al’oczi A, Hornyik C, Varga N, Burgy’an J, Kauppinen S, Havelda Z (2004) Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res 32:e175

    Article  Google Scholar 

  10. Li W, Ruan KC (2009) MicroRNA detection by microarray. Anal Bioanal Chem 394:1117–1124

    Article  CAS  Google Scholar 

  11. Sempere LF, Dubrovsky EB, Dubrovskaya VA, Berger EM, Ambros V, Ros A (2002) The expression of the let-7 small regulatory RNA is controlled by ecdysone during metamorphosis in Drosophila melanogaster. Dev Biol 244:170–179

    Article  CAS  Google Scholar 

  12. Kroh EM, Parkin RK, Mitchell PS, Tewari M (2010) Analysis ofcirculating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 50:298–301

    Article  CAS  Google Scholar 

  13. Maroney PA, Chamnongpol S, Souret F, Nilsen TW (2008) Directdetection of small RNAs using splinted ligation. Nat Protocols 3:279–287

    Article  CAS  Google Scholar 

  14. Lua Y, Chen W (2012) Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem Soc Rev 41:3594–3623

    Article  Google Scholar 

  15. Jia X, Li J, Wang E (2013) Cu nanoclusters with aggregation induced emission enhancement. Small 9:3873–3879

    Article  CAS  Google Scholar 

  16. Sharma J, Yeh HC, Yoo H, Werner JH, Martinez JS (2011) Silver nanocluster aptamers: in situ generation of intrinsically fluorescent recognition ligands for protein detection. Chem Commun 47:2294–2296

    Article  CAS  Google Scholar 

  17. Liu L, Yang Q, Lei J, Xua N, Ju H (2014) DNA-regulated silver nanoclusters for label-free ratiometric fluorescence detection of DNA. Chem Commun 50:13698–13701

    Article  CAS  Google Scholar 

  18. Huang Y, Lein J, Cheng Y, Ju H (2016) Ratiometric electrochemiluminescent strategy regulated by electrocatalysis of palladium nanocluster for immunosensing. Biosens Bioelectron 77:733–739

    Article  CAS  Google Scholar 

  19. Borghei YS, Hosseini M, Dadmehr M, Hosseinkhani S, Ganjali MR, Sheikhnejad R (2016) Visual detection of cancer cells by colorimetric aptasensor based on aggregation of gold nanoparticle induced by DNA hybridiztion. Anal Chim Acta 904:92–97

  20. Dadmehr M, Hosseini M, Hosseinkhani S, Ganjali MR, Sheikhnejad R (2015) Label free colorimetric and fluorimetric direct detection of methylated DNA based on silver nanoclusters for cancer early diagnosis. Biosens Bioelectron 73:108–113

    Article  CAS  Google Scholar 

  21. Ahmadzadeh KH, Hosseini M, Dadmehr M, Ganjali MR (2016) Rapid restriction enzyme free detection of DNA Methytransferase activity based on DNA-templated siver nanoclusters. Anal Bioanal Chem 408:4311–4318

    Article  Google Scholar 

  22. Kumar Das N, Ghosh S, Priya A, Datta S, Mukherjee S (2015) Luminescent copper nanoclusters as a specific cell-imaging probe and a selective metal ion sensor. J Phys Chem C 119:24657–24664

    Article  Google Scholar 

  23. Wang C, Yao Y, Song Q (2016) Interfacial synthesis of polyethyleneimine-protected coppernanoclusters: size-dependent tunable photoluminescence, pH sensorand bioimaging. Colloid Surfaces B 140:373–381

    Article  CAS  Google Scholar 

  24. Cui M, Song G, Wang C, Song Q (2015) Synthesis of cysteine-functionalized water-soluble luminescent copper nanousters and their application to the determination of chromium(VI). Microchem Acta 182:1371–1377

    Article  CAS  Google Scholar 

  25. Cathcart N, Mistry P, Makra C, Pietrobon B, Coombs N, Jelokhani-Niaraki M, Kitaev V (2009) Chiral thiol-stabilized silver nanoclusters with well-resolved optical transitions synthesized by a facile etching procedure in aqueous solutions. Langmuir 25:5840–5846

    Article  CAS  Google Scholar 

  26. Yang X, Feng Y, Zhu S, Luo Y, Zhuo Y, Dou Y (2014) One-step synthesis and applications of fluorescent cu nanoclusters stabilized by L-cysteine in aqueous solution. Anal Chim Acta 847:49–54

    Article  CAS  Google Scholar 

  27. Mao Z, Qing Z, Qing T, Xu F, Wen L, He X, He D, Shi H, Wang K (2015) Poly(thymine)-templated copper nanoparticles as a fluorescent indicator for hydrogen peroxide and oxidase-based Biosensing. Anal Chem 87:7454–7460

    Article  CAS  Google Scholar 

  28. Liu G, Shao Y, Peng J, Dai W, Liu L, Xu S, Wu F, Wu X (2013) Highly thymine-dependent formation of fluorescent copper nanoparticles templated by ss-DNA. Nanotechnology 24:345502 (7pp)

    Article  Google Scholar 

  29. Qing Z, Mao Z, Qing T, He X, Zou Z, He D, Shi H, Huang J, Liu J, Wang K (2014) Visual and portable strategy for copper(II) detection based on a strip like poly(thymine)-caged and Microwell-printed hydrogel. Anal Chem 86:11263–11268

    Article  CAS  Google Scholar 

  30. Hu Y, Wu Y, Chen T, Chu X, Yu R (2013) Double-strand DNA-templated synthesis of copper nanoclusters as novel fluorescence probe for label-free detection of biothiols. Anal Methods 5:3577–3613

    Article  CAS  Google Scholar 

  31. Liu J, Zhang QM, Feng Y, Zhou Z, Shih K (2016) Solvent-switching gelation and Orange–red emission of Ultrasmall copper nanoclusters. ChemPhysChem 17:225–231

    Article  CAS  Google Scholar 

  32. Knowles KE, Hartstein KH, Kilburn TB, Marchioro A, Nelson HD, Whitham PJ, Gamelin DR (2016) Luminescent colloidal semiconductor nanocrystals containing copper: synthesis, Photophysics, and applications. Chem Rev 116:10820–10851

    Article  CAS  Google Scholar 

  33. Yuan X, Tay Y, Dou X, Luo Z, Leong DT, Xie J (2013) Glutathione-protected silver nanoclusters as cysteine-selective Fluorometric and colorimetric probe. Anal Chem 85:1913–1919

    Article  CAS  Google Scholar 

  34. Chai F, Wang C, Wang T, Ma Z, Su Z (2010) L-cysteine functionalized gold nanoparticles for the colorimetric detection of Hg2+ induced by ultraviolet light. Nanotechnology 21:025501 (6pp)

    Article  Google Scholar 

  35. Cui M, Song G, Wang C, Song Q (2015) Synthesis of cysteine-functionalized water –soluble luminescent copper nanoclusters and their application to the determination of chromium. Microchim Acta 182:1371–1377

    Article  CAS  Google Scholar 

  36. Tyagi S, Marras SAE, Kramer FR (2000) Wavelength-shifting molecular beacons. Nat Biotech 18:1191–1196

    Article  CAS  Google Scholar 

  37. Lee SY, Hairul Bahara NH, Choon g YS, Lim TS, Tye GJ (2014) DNA fluorescence shift sensor: a rapid method for the detection of DNA hybridization using silver nanoclusters. J Colloid Interface Sci 433:183–188

    Article  CAS  Google Scholar 

  38. Jia X, Li J, Han L, Ren J, Yang X, Wang E (2012) DNA-hosted copper nanoclusters for fluorescent identification of single nucleotide polymorphisms. ACS Nano 4:3311–3317

    Article  Google Scholar 

  39. Shi H-Y, Yang L, Zhou X-Y, Bai J, Gao J, Jia H-X, Li Q-G (2017) A gold nanoparticle-based colorimetric strategy coupled to duplex-specific nuclease signal amplification for the determination of microRNA. Microchim Acta 184(2):525–531

    Article  CAS  Google Scholar 

  40. Chi BZ, Liang RP, Qiu WB, Yuan YH, Qiu JD (2017) Direct fluorescence detection of microRNA based on enzymatically engineered primer extension poly-thymine (EPEPT) reaction using copper nanoparticles as nano-dye. Biosens Bioelectron 87:216–221

    Article  CAS  Google Scholar 

  41. Guo Y, Wang Y, Yang G, Xu J-J, Chen H-Y (2016) MicroRNA-mediated signal amplification coupled with GNP/ dendrimers on a mass-sensitive biosensor and its applications in intracellular microRNA quantification. Biosens Bioelectron 85:897–902

    Article  CAS  Google Scholar 

  42. Feng Q-M, Shen Y-Z, Li M-X, Zhang Z-L, Zhao W, Xu J-J, Chen H-Y (2016) Dual-wavelength electrochemiluminescence ratiometry based on resonance energy transfer between au nanoparticles functionalized g-C3N4 nanosheet and Ru(bpy)3 2+ for microRNA detection. Anal Chem 88(16):8179–8187

    Article  Google Scholar 

  43. Wu Y, Han J, Xue P, Xu R, Kang Y (2015) Nano metal-organic framework (NMOF)-based strategies for multiplexed MicroRNA detection in solution and living cancer cells. Nano 7:1753–1759

    CAS  Google Scholar 

  44. Liu H, Bei X, Xia Q, Fu Y, Zhang S, Liu M, Fan K, Zhang M, Yang Y (2015) Enzyme-free electrochemical detection of microRNA-21 using immobilized hairpin probes and a target-triggered hybridization chain reaction amplification strategy. Microchim Acta 183:297–304

    Article  Google Scholar 

  45. Yang J, Tang M, Diao W, Cheng W, Zhang Y, Yan Y (2016) Electrochemical strategy for ultrasensitive detection of microRNA based on MNAzyme-mediated rolling circle amplification on a gold electrode. Microchim Acta 183:3061–3068

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the research Council of University of Tehran for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Hosseini.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 1174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borghei, YS., Hosseini, M. & Ganjali, M.R. Fluorescence based turn-on strategy for determination of microRNA-155 using DNA-templated copper nanoclusters. Microchim Acta 184, 2671–2677 (2017). https://doi.org/10.1007/s00604-017-2272-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2272-6

Keywords

Navigation