Skip to main content
Log in

Electrochemiluminescence DNA biosensor based on the use of gold nanoparticle modified graphite-like carbon nitride

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an electrochemiluminescent (ECL) DNA biosensor that is based on the use of gold nanoparticles (AuNPs) modified with graphite-like carbon nitride nanosheets (g-C3N4 NSs) and carrying a DNA probe. In parallel, nanoparticles prepared from gold-platinum (Au/Pt) alloy and carbon nanotubes (CNTs) were placed on a glassy carbon electrode (GCE). Once the g-C3N4 NHs hybridize with DNA-modified AuNPs, they exhibit strong and stable cathodic ECL activity. The Au/Pt-CNTs were prepared by electrochemical deposition of Au/Pt on the surface of the CNTs in order to warrant good electrical conductivity. On hybridization of immobilized capture probe (S1), target DNA (S2) and labeled signal probe (S3), a sandwich-type DNA complex is formed that produces a stable ECL emission at a typical applied voltage of −1.18 V and in the presence of peroxodisulfate. Under optimized conditions, the method has a response to target DNA that is linearly related to the logarithm of its concentration in the range between 0.04 f. and 50 pM, with a 0.018 f. detection limit.

Schematic presentation of an electrochemiluminescent DNA biosensor based on two-dimensional graphite-like carbon nitride nanosheets (g-C3N4 NSs) hybridized with gold nanoparticles. Abbreviations: MCH: 6-mercapto-1-hexanol; S1: Capture probe; S2: target DNA. 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lam B, Das J, Holmes RD, Live L, Sage A, Sargent EH, Kelley SO (2013) Solution-based circuits enable rapid and multiplexed pathogen detection Nat Commun 4. doi:10.1038/ncomms3001

  2. Newman AM, Bratman SV, To J, Wynne JF, Eclov NCW, Modlin LA, Liu CL, Neal JW, Wakelee HA, Merritt RE, Shrager JB, Loo BW, Alizadeh AA, Diehn M (2014) An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 20:552–558. doi:10.1038/nm.3519

    Article  Google Scholar 

  3. Hsieh K, Patterson AS, Ferguson BS, Plaxco KW, Soh HT (2012) Rapid, sensitive, and quantitative detection of pathogenic DNA at the point of care through microfluidic electrochemical quantitative loop-mediated isothermal amplification. Angew Chem 124:4980–4984. doi:10.1002/ange.201109115

    Article  Google Scholar 

  4. Freeman R, Liu X, Willner I (2011) Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer–substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots. J Am Chem Soc 133:11597–11604. doi:10.1021/ja202639m

    Article  CAS  Google Scholar 

  5. He S, Song B, Li D, Zhu C, Qi W, Wen Y (2010) A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv Fun Mater 20:453–459. doi:10.1002/adfm.200901639

    Article  CAS  Google Scholar 

  6. Han WH, Liao JM, Chen KL, Wu SM, Chiang YW, Lo ST (2010) Enhanced recognition of single-base mismatch using locked nucleic acid-integrated hairpin DNA probes revealed by atomic force microscopy nanolithography. Anal Chem 82:2395–2400. doi:10.1021/ac902665c

    Article  CAS  Google Scholar 

  7. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493. doi:10.1021/cr068107d

    Article  CAS  Google Scholar 

  8. Hu L, Xu G (2010) Applications and trends in electrochemiluminescence. Chem Soc Rev 39:3275–3304. doi:10.1039/B923679C

    Article  CAS  Google Scholar 

  9. Cosnier S, Mailley P (2008) Recent advances in DNA sensors. Analyst 133:984–991. doi:10.1039/B803083A

    Article  CAS  Google Scholar 

  10. Huang X, Zeng Z, Fan Z, Liu J, Zhang H (2012) Graphene-based electrodes. Adv Mater 24:5979–6004. doi:10.1002/adma.201201587

    Article  CAS  Google Scholar 

  11. Xiang Q, Yu J, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41:782–796. doi:10.1039/C1CS15172J

    Article  CAS  Google Scholar 

  12. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of grapheme. Science 332:1537–1541. doi:10.1126/science.1200770

    Article  CAS  Google Scholar 

  13. Xu C, Xu B, Gu Y, Xiong Z, Sun J, Zhao XS (2013) Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications. Energy Environ Sci 6:1388–1414. doi:10.1039/C3EE42518E

    Article  CAS  Google Scholar 

  14. Xu HH, Wang YZ, Hu SH (2017) Nanocomposites of graphene and graphene oxides: synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A Review doi:10.1007/s00604-016-2007-0

  15. Wang Y, Wang XC, Antonietti M (2012) Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew Chem Int Ed 51:68–89. doi:10.1002/anie.201101182

    Article  CAS  Google Scholar 

  16. Zhao XD, Xie X, Wang H, Zhang JJ, Pan BC, Xie Y (2013) Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J Am Chem Soc 135:18–21. doi:10.1021/ja308249k

  17. Yang SB, Gong YJ, Zhang JS, Zhan L, Ma LL, Fang ZY, Vajtai R, Wang XC, Ajayan PM (2013) Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv Mater 25:2452–2456. doi:10.1002/adma.201204453

    Article  CAS  Google Scholar 

  18. Chen LC, Huang DJ, Ren SY, Dong TQ, Chi YW, Chen GN (2013) Preparation of graphite-like carbon nitride nanoflake film with strong fluorescent and electrochemiluminescent activity. Nano 5:225–230. doi:10.1039/C2NR32248J

    CAS  Google Scholar 

  19. Chen LC, Zeng XT, Si P, Chen YM, Chi YW, Kim DH, Chen GN (2014) Gold nanoparticle-graphite-like C3N4 nanosheet nanohybrids used for electrochemiluminescent immunosensor. Anal Chem 86:4188–4195. doi:10.1021/ac403635f

    Article  CAS  Google Scholar 

  20. Li XH, Wang XC, Antonietti M (2012) Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem Sci 3:2170–2174. doi:10.1039/C2SC20289A

    Article  CAS  Google Scholar 

  21. Zhen SJ, Chen LQ, Xiao SJ, Li YF, Hu PP, Zhan L, Peng L, Song EQ, Huang CZ (2010) Carbon nanotubes as a low background signal platform for a molecular aptamer beacon on the basis of long-range resonance energy transfer. Anal Chem 82:8432–8437. doi:10.1021/ac100709s

    Article  CAS  Google Scholar 

  22. Zhang Q, Huang JQ, Qian WZ, Zhang YY, Wei F (2013) The road for Nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9:1237–1265. doi:10.1002/smll.201203252

    Article  CAS  Google Scholar 

  23. Xu W, Xue XJ, Li TH, Zeng HQ, Liu XG (2009) Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angew Chem Int Ed 48:6849–6852. doi:10.1002/anie.200901772

    Article  CAS  Google Scholar 

  24. Lollmahomed FB, Narain R (2011) Photochemical approach toward deposition of gold nanoparticles on functionalized carbon nanotubes. Langmuir 27:12642–12649. doi:10.1021/la2025268

    Article  CAS  Google Scholar 

  25. Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99:1787. doi:10.1021/cr970102g

    Article  CAS  Google Scholar 

  26. Tang YR, Song HJ, Su YY, Lv Y (2013) Turn-on persistent luminescence probe based on graphitic carbon nitride for imaging detection of Biothiols in biological fluids. Anal Chem 85:11876–11884. doi:10.1021/ac403517u

    Article  CAS  Google Scholar 

  27. Miao WJ (2008) Electrogenerated chemiluminescence and its biorelated applications. Chem Rev 108:2506–2553. doi:10.1021/cr068083a

    Article  CAS  Google Scholar 

  28. Zhang SS, Zhong H, Ding CF (2008) Ultrasensitive flow injection Chemiluminescence detection of DNA hybridization using signal DNA probe modified with au and CuS nanoparticles. Anal Chem 80:7206–7212. doi:10.1021/ac800847r

    Article  CAS  Google Scholar 

  29. Gerion D, Chen FQ, Kannan B, Fu AH, Parak WJ, Chen DJ, Majumdar A, Alivisatos AP (2003) Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. Anal Chem 75:4766–4772. doi:10.1021/ac034482j

    Article  CAS  Google Scholar 

  30. Zhang DD, Peng YG, Qi HL, Gao Q, Zhang CX (2010) Label-free electrochemical DNA biosensor array for simultaneous detection of the HIV-1 and HIV-2 oligonucleotides incorporating different hairpin-DNA probes and redox indicator. Biosens Bioelectron 25:1088–1094. doi:10.1016/j.bios.2009.09.032

    Article  CAS  Google Scholar 

  31. Sato K, Hosokawa K, Maeda M (2003) Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J Am Chem Soc 125:8102–8103. doi:10.1021/ja034876s

    Article  CAS  Google Scholar 

  32. Jie GF, Yuan JX (2012) Novel magnetic Fe3O4@CdSe composite quantum dot-based Electrochemiluminescence detection of thrombin by a multiple DNA cycle amplification strategy. Anal Chem 84:2811–2817. doi:10.1021/ac203261x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (51273084, 51473067). Excellent Youth Foundation of Shandong Provincial 264 (ZR2015JL019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Yan.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, L., Shen, L. et al. Electrochemiluminescence DNA biosensor based on the use of gold nanoparticle modified graphite-like carbon nitride. Microchim Acta 184, 2587–2596 (2017). https://doi.org/10.1007/s00604-017-2234-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2234-z

Keywords

Navigation