Skip to main content
Log in

Electrochemiluminescence based determination of micro-RNA using target-guided assembly of gold nanoparticles on an electrode modified with Nafion, carbon nanotubes and polyvinylpyrrolidone

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a sensing interface that is capable of selectively adsorbing gold nanopartices (AuNPs). It was applied to electrochemiluminescent (ECL) detection of microRNA (miRNA). The AuNPs are used as signal transduction probes and luminol acts as the ECL reagent. The sensing interface was generated by sequential assembly of Nafion-carbon nanotubes (CNTs) and polyvinylpyrrolidone (PVP) at a glassy carbon electrode (GCE). If only ss-DNA probes and AuNPs are present, the interaction between them leads to the formation of ss-DNA-capped AuNPs. In this case, the capped-AuNP do not assemble at the interface of the modified electrode. As a result, the ECL is weak due to the poor electroconductivity of PVP. Conversely, if ss-DNA probes bind to target miRNA, the AuNPs can’t interact with the DNA/miRNA hybrids formed because of its rigid structure. Hence, aggregated-AuNP are generated. These are concentrated in the sensing interface due to the strong interaction between AuNP and PVP assembled at the modified electrode surface via Au-N chemical bonds. The AuNP concentrated at the surface of the modified GCE electrocatalyze the oxidation of luminol which results in strong ECL. These findings were used to design a quantitative assay for trace levels of miRNA. To confirm the viability of the method, let-7a was used as a model analyte. Under the optimal conditions, the resulting calibration plot is linear in the 40 fM. to 1.0 pM concentration range with a detection limit as low as 20 fM. The method is even capable of discriminating most let-7 miRNA family members and was successfully applied to real sample assay. In our perception, the results demonstrate that this sensing interface represents a cost-effective and sensitive tool for determination of clinically relevant cancer biomarkers.

The electrochemiluminescent detection scheme for miRNAs is based on target-guided assembly of gold nanoparticles on a glassay carbon electrode modified with Nafion, carbon nanotubes and polyvinylpyrrolidone. The method is likely to have a wide scope in terms of gene expression profiling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. MacRae I, Zhou K, Li F, Repic A, Brooks A, Cande W, Adams P, Doudna J (2006) Structural basis for double-stranded RNA processing by dicer. Science 311:195–198

    Article  CAS  Google Scholar 

  2. Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X (2013) MicroRNA: function, detection, and Bioanalysis. Chem Rev 113:6207–6233

    Article  CAS  Google Scholar 

  3. Cheng G (2015) Circulating miRNAs: roles in cancer diagnosis, prognosis and therapy. Adv Drug Deliv Rev 81:75–93

    Article  CAS  Google Scholar 

  4. Li Y, Liang L, Zhang C (2013) Isothermally sensitive detection of serum circulating miRNAs for lung cancer Diagosis. Anal Chem 85:11174–11179

    Article  CAS  Google Scholar 

  5. Liu N, Olson E (2010) MicroRNA regulatory networks in cardiovascular development. Dev Cell 18:510–525

    Article  CAS  Google Scholar 

  6. Cissell K, Deo S (2009) Trends in microRNA detection. Anal Bioanal Chem 394:1109–1116

    Article  CAS  Google Scholar 

  7. Leshkowitz D, Horn-Saban S, Parmet Y, Feldmesser E (2013) Differences in microRNA detection levels are technology and sequence dependent. RNA 19:527–538

    Article  CAS  Google Scholar 

  8. Va’lo’czi A, Hornyik C, Varga N, Burgya’n J, Kauppinenl S, Haveld Z (2004) Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res 32:e175

    Article  Google Scholar 

  9. Pall G, Codony-Servat C, Byrne J, Ritchie L, Hamilton A (2007) Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by northern blot. Nucleic Acids Res 35:e60

    Article  Google Scholar 

  10. Chen C, Ridzon D, Broomer A, Zhou Z, Lee D, Nguyen J, Barbisin M, Xu N, Mahuvakar V, Andersen M, Lao K, Livak K, Karl G (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  Google Scholar 

  11. Yu C, Yin B, Ye B (2013) A universal real-time PCR assay for rapid quantification of microRNAs via the enhancement of base-stacking hybridization. Chem Commun 49:8247–8249

    Article  CAS  Google Scholar 

  12. Liu C, Calin G, Meloon B, Gamliel N, Sevignani C, Ferracin M, Dumitru C, Shimizu M, Zupo S, Dono M, Alder H, Bullrich F, Negrini M, and Croce C (2004) An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc. Natl. Acad. Sci. U.S.A 101: 9740–9744.

  13. Lim L, Lau N, Garrett-Engele P, Grimson A, Schelter J, Castle J, Bartel D, Linsley P, Johnson J (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  CAS  Google Scholar 

  14. Teo A, Lim C, Gao Z (2014) The development of electrochemical assays for microRNAs. Electrochimi Acta 126:19–30

    Article  CAS  Google Scholar 

  15. Jamali A, Pourhassan-Moghaddam M, Dolatabadi J, Omidi Y (2014) Nanomaterials on the road to microRNA detection with optical and electrochemical nanobiosensors. Trends Anal Chem 55:24–42

    Article  CAS  Google Scholar 

  16. Miao W (2008) Electrogenerated Chemiluminescence and its Biorelated applications. Chem Rev 108:2506–2553

    Article  CAS  Google Scholar 

  17. Hu L, Xu G (2010) Applications and trends in electrochemiluminescence. Chem Soc Rev 39:3275–3304

    Article  CAS  Google Scholar 

  18. Zhang P, Wu X, Yuan R, Chai Y (2015) An “off-on” electrochemiluminescent biosensor based on DNAzyme-assisted target recycling and rolling circle amplifications for ultrasensitive detection of microRNA. Anal Chem 87:3202–3207

    Article  CAS  Google Scholar 

  19. Zhang P, Zhuo Y, Chang Y, Yuan R, Chai Y (2015) Electrochemiluminescent Graphene quantum dots as a sensing platform: a dual amplification for MicroRNA assay. Anal Chem 87:10385–10391

    Article  CAS  Google Scholar 

  20. Chen A, Gui G, Zhuo Y, Chai Y, Xiang Y, Yuan R (2015) Signal-off electrochemiluminescence biosensor based on Phi29 DNA polymerase mediated strand displacement amplification for MicroRNA detection. Anal Chem 87:6328–6334

    Article  CAS  Google Scholar 

  21. Chen A, Ma S, Zhuo Y, Chai Y, Yuan R (2016) In situ electrochemical generation of electrochemiluminescent silver Naonoclusters on target-cycling synchronized rolling circle amplification platform for MicroRNA detection. Anal Chem 88:3203–3210

    Article  CAS  Google Scholar 

  22. Cheng Y, Lei J, Chen Y, Ju H (2014) Highly selective detection of microRNA based on distance-dependent electrochemiluminescence resonance energy transfer between CdTe nanocrystals and Au nanoclusters. Biosens Bioelectron 51:431–436

    Article  CAS  Google Scholar 

  23. Hao N, Li X, Zhang H, Xu J, Chen H (2014) A highly sensitive ratiometric electrochemiluminescent biosensor for microRNA detection based on cyclic enzyme amplification and resonance energy transfer. Chem Commun 50:14828–14830

    Article  CAS  Google Scholar 

  24. Feng Q, Shen Y, Li M, Zhang Z, Zhao W, Xu J, Chen H (2016) Dual-wavelength electrochemiluminescence ratiometry based on resonance energy transfer between Au nanoparticles functionalized g-C3N4 Nanosheet and Ru(bpy)3 2+ for microRNA detection. Anal Chem 86:937–944

    Article  Google Scholar 

  25. Zhang P, Wu X, Chai Y, Yuan R (2014) An electrochemiluminescent microRNA biosensor based on hybridization chain reaction coupled with hemin as the signal enhancer. Analyst 139(11):2748–2753

    Article  CAS  Google Scholar 

  26. Liao Y, Huang R, Ma Z, Wu Y, Zhou X, Xing D (2014) Target-triggered enzyme-free amplification strategy for sensitive detection of MicroRNA in tumor cells and tissues. Anal Chem 86:4596–4604

    Article  CAS  Google Scholar 

  27. Chili M, Pullabhotla V, Revaprasadu N (2011) Synthesis of PVP capped gold nanoparticles by the UV-irradiation technique. Mater Lett 65:2844–2847

    Article  CAS  Google Scholar 

  28. Tang X, Jiang P, Ge G, Tsuji M, Xie S, Guo Y (2008) Poly(N-vinyl-2-pyrrolidone) (PVP)-capped dendritic gold nanoparticles by a one-step hydrothermal route and their high SERS effect. Langmuir 24:1763–1768

    Article  CAS  Google Scholar 

  29. Zhang H, Okumura M, Toshima N (2011) Stable Disprsions of PVP-protected Au/Pt/Ag Trimetallic nanoparticles as highly active colloidal catalysts for aerobic glucose oxidation. J Phys Chem C 115:14883–14891

    Article  CAS  Google Scholar 

  30. Song H, Rioux R, Hoefelmeyer J, Komor R, Niesz K, Grass M, Yang P, Somorjai G (2006) Hydrothermal growth of Mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: synthesis, characterization, and catalytic properties. J Am Chem Soc 128:3027–3037

    Article  CAS  Google Scholar 

  31. Liu X, Niu W, Li H, Han S, Hu L, Xu G (2008) Glucose biosensor based on gold nanoparticle-catalyzed luminol electrochemiluminescence on a three-dimensional sol-gel network. Electrochem Commun 10:1250–1253

    Article  CAS  Google Scholar 

  32. Xu S, Liu Y, Wang T, Li J (2010) Highly sensitive Electrogenerated Chemiluminescence biosensor in profiling protein kinase activity and inhibition using gold nanoparticle as signal transduction probes. Anal Chem 82:9566–9572

    Article  CAS  Google Scholar 

  33. Li Y, Tian R, Zheng X, Huang R (2016) Amplified electrochemical detection of nucleic acid hybridization via selective preconcentration of unmodified gold nanoparticles. Anal Chim Acta 934:59–65

    Article  CAS  Google Scholar 

  34. Mucic R, Storhoff J, Mirkin C, Letsinger R (1998) DNA-directed synthesis of binary nanoparticle network materials. J Am Chem Soc 120:12674–12675

    Article  CAS  Google Scholar 

  35. Li H and Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci. U.S.A 101: 14036–14039.

  36. Li H, Rothberg L (2004) Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J Am Chem Soc 126:10958–10961

    Article  CAS  Google Scholar 

  37. Zhang Y, Yan Y, Chen W, Li S, Ding X, Li D, Wang H, Ju H, Ding S (2015) A simple electrochemical biosensor for highly sensitive and specific detection of microRNA based on mismatched catalytic hairpin assembly. Biosens Bioelectron 68:343–349

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 21375085) and Foundation of Shaanxi Educational Department of China (16JK1131). The authors are grateful to Associate Professor Pan Wang from Shaanxi Normal University College of Life Sciences for providing breast cancer cell.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingwang Zheng.

Ethics declarations

The authors declare no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 4436 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, H., Zheng, X. Electrochemiluminescence based determination of micro-RNA using target-guided assembly of gold nanoparticles on an electrode modified with Nafion, carbon nanotubes and polyvinylpyrrolidone. Microchim Acta 184, 1781–1789 (2017). https://doi.org/10.1007/s00604-017-2163-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2163-x

Keywords

Navigation