Skip to main content
Log in

Titanium dioxide anchored graphene oxide nanosheets for highly selective voltammetric sensing of dopamine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors report on an efficient method for the voltammetric sensing of dopamine (DA) by using an electrode modified with alternating monolayers of graphene oxide (GO) and Titanium dioxide (TiO2) nanoparticles anchored GO nanosheets (NSs)). The as-prepared nanostructures were characterized by photoluminescence spectroscopy, powder X-ray diffraction, Raman spectroscopy, FT-IR spectroscopy, transmission electron microscopy, scanning electron microscopy, atomic force microscopy and Energy Dispersive X-ray Analysis (EDAX) techniques. The GO/TiO2 nanocomposite (NC) was deposited on a glassy carbon electrode (GCE), where it displayed an excellent electrocatalytic activity toward the oxidation of DA, owing to its excellent conductivity, high specific surface area, enhanced interfacial contact and more negative zeta potential. Figures of merit include (a) a fast response (5 s), (b) a wide linear range (between 0.2 and 10 μM of DA) (c) a particularly low detection limit (27 nM), (d) a working potential as low as 0.25 V (vs. Ag/AgCl) and (e) a sensitivity of 1.549 μA·μM−1·cm−2. The GO/TiO2/GCE exhibited excellent selectivity over the other interferences as revealed by the differential pulse voltammetric and amperometric studies. The analysis of spiked urine samples resulted in recoveries in the range of 96 to 106%, with RSDs between 3.8 and 5.2%.

A GO/TiO2 (graphene oxide/titanium dioxide) nanocomposite (NC) was prepared and exploited as electrochemical probes in DA detection. It displays a low detection limit, wide linear range and excellent selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yusoff N, Pandikumar A, Ramaraj R, Ngee LH, Huang NM (2015) Gold nanoparticle based optical and electrochemical sensing of dopamine. Microchim Acta 182:2091–2114. doi:10.1007/s0060401516092

    Article  CAS  Google Scholar 

  2. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:141. doi:10.1007/s0060401413084

    Google Scholar 

  3. Pradhan T, Jung HS, Jang JH, Kim TW, Kang C, Kim JS (2014) Chemical sensing of neurotransmitters. Chem Soc Rev 43:4684–4713. doi:10.1039/C3CS60477B

    Article  CAS  Google Scholar 

  4. Pandikumar A, How GTS, See TP, Omar FS, Jayabal S, Kamali KZ, Yusoff N, Jamil A, Ramaraj R, John SA, Limbe HN, Huang NM (2014) Graphene and its nanocomposite material based electrochemical sensor platform for dopamine. RSC Adv 4:63296–63323. doi:10.1039/c4ra13777a

    Article  CAS  Google Scholar 

  5. Salamon J, Sathishkumar Y, Ramachandran K, Lee YS, Yoo DJ, Kim AR, GnanaKumar G (2015) One-pot synthesis of magnetite nanorods/graphene composites and its catalytic activity toward electrochemical detection of dopamine. Biosens Bioelectron 64:269–276. doi:10.1016/j.bios.2014.08.085

    Article  CAS  Google Scholar 

  6. Rani GJ, Babu KJ, GnanaKumar G, Rajan MAJ (2016) Watsonia meriana Flower like Fe3O4/reduced graphene oxide nanocomposite for the highly sensitive and selective electrochemical sensing of dopamine. J Alloys Compd 688:500–512. doi:10.1016/j.jallcom.2016.07.101

    Article  CAS  Google Scholar 

  7. Jackowska K, Krysinski P (2013) New trends in the electrochemical sensing of dopamine. Anal Bioanal Chem 405:3753–3771. doi:10.1007/s00216-012-6578-2

    Article  CAS  Google Scholar 

  8. LiXia Y, ShengLian L, QingYun CAI, ShouZhuo YAO (2010) A review on TiO2 nanotube arrays: fabrication, properties, and sensing applications. Chin Sci Bull 55:331–338. doi:10.1007/s11434-009-0712-3

    Article  Google Scholar 

  9. Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81:5603–5613. doi:10.1021/ac900136z

    Article  CAS  Google Scholar 

  10. Zhou TN, Qi XD, Fu Q (2013) The preparation of the poly(vinyl alcohol)/graphene nanocomposites with low percolation threshold and high electrical conductivity by using the large-area reduced graphene oxide sheets. Express Polym Lett 7(9):747–755. doi:10.3144/expresspolymlett.2013.72

    Article  CAS  Google Scholar 

  11. Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:1–54. doi:10.1103/RevModPhys.81.109

    Article  Google Scholar 

  12. Pop E, Varshney V, Roy AK (2012) Thermal properties of graphene: fundamentals and applications. MRS Bull 37:1273–1281. doi:10.1557/mrs.2012.203

    Article  CAS  Google Scholar 

  13. Berman D, Erdemir A, Sumant AV (2014) Graphene: a new emerging lubricant. Materials Today 17:31–42. doi:10.1016/j.mattod.2013.12.003

    Article  CAS  Google Scholar 

  14. Falkovsky LA (2010) Optical properties of graphene. J Phys Conf Ser 129(012004):1–7. doi:10.1088/1742-6596/129/1/012004

    Google Scholar 

  15. Sharma D, Kanchi S, Myalowenkosi SI, Bisetty K (2016) Insight into the biosensing of graphene oxide: present and future prospects. Arab J Chem 9:238–261. doi:10.1016/j.arabjc.2015.07.015

    Article  CAS  Google Scholar 

  16. Gao F, Cai X, Wang X, Gao C, Liu S, Gao F, Wang Q (2013) Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sensors Actuators B Chem 186:380–387. doi:10.1016/j.snb.2013.06.020

    Article  CAS  Google Scholar 

  17. Josephine DSR, Sakthivel B, Sethuraman K, Dhakshinamoorthy A (2015) A titanium dioxide/graphene oxide nanocomposites as heterogeneous catalysts for the esterification of benzoic acid with dimethyl carbonate. Chem Plus Chem 80:1472–1477. doi:10.1002/cplu.201500080

    CAS  Google Scholar 

  18. Josephine DSR, Sakthivel B, Sethuraman K, Dhakshinamoorthy A (2016) A synthesis, characterization and catalytic activity of CdS-graphene oxide nanocomposites. Chemistry Select 1:2332–2340. doi:10.1002/slct.201600384

    CAS  Google Scholar 

  19. Zheng Q, Li Z, Yang J, Kim JK (2014) Graphene oxide-based transparent conductive films. Prog Mat Sci 64:200–247. doi:10.1016/j.pmatsci.2014.03.004

    Article  CAS  Google Scholar 

  20. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide. Nature lett 448:457–460. doi:10.1038/nature06016

    Article  CAS  Google Scholar 

  21. Lia F, Jianga X, Zhaoa J, Zhang S (2015) Graphene oxide: a promising nanomaterial for energy and environmental applications. Nano Energy 16:488–515. doi:10.1016/j.nanoen.2015.07.014

    Article  Google Scholar 

  22. Yang Y, Asiri AM, Tang Z, Du D, Lin Y (2013) Graphene based materials for biomedical applications. Materials Today 16:365–373. doi:10.1016/j.mattod.2013.09.004

    Article  CAS  Google Scholar 

  23. Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48:4785–4787. doi:10.1002/anie.200901479

    Article  CAS  Google Scholar 

  24. Zhang H, Huang H, Lin Z, Su X (2014) A turn-on fluorescence-sensing technique for glucose determination based on graphene oxide–DNA interaction. Anal Bioanal Chem 406:6925–6932. doi:10.1007/s00216-014-7758-z

    Article  CAS  Google Scholar 

  25. Ren H, Kulkarni DD, Kodiyath R, Xu W, Choi I, Tsukruk VV (2014) Competitive adsorption of dopamine and rhodamine 6G on the surface of graphene oxide. ACS Appl Mater Interfaces 6:2459–2470. doi:10.1021/am404881p

    Article  CAS  Google Scholar 

  26. Bai J, Zhou B (2014) Titanium dioxide nanomaterials for sensor applications. Chem Rev 114:10131–10176. doi:10.1021/cr400625j

    Article  CAS  Google Scholar 

  27. Li F, Gan S, Han D, Niu L (2015) Graphene-based Nanohybrids for advanced electrochemical sensing. Electroanalysis 27:2098–2115. doi:10.1002/elan.201500217

    Article  CAS  Google Scholar 

  28. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339. doi:10.1021/ja01539a017

    Article  CAS  Google Scholar 

  29. Lin CH, Yeh WT, Chan CH, Lin CC (2012) Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes. Nanoscale Res Lett 7(343):1–6. doi:10.1186/1556-276X-7-343

    Google Scholar 

  30. Hong WG, Kim BH, Lee SM, Yu HY, Yun YJ, Jun Y, Lee JB, Kim HJ (2012) Agent-free synthesis of graphene oxide/transition metal oxide composites and its application for hydrogen storage. Int J Hydrog Energy 37:7594–7599. doi:10.1016/j.ijhydene.2012.02.010

    Article  CAS  Google Scholar 

  31. Zhao J, Liu L, Li F (2015) Graphene oxide: physics and applications, New York Dordrecht London, Springer Heidelberg.

  32. Vasconcelos DCL, Costa VC, Nunes EHM, Sabioni ACS, Gasparon M, Vasconcelos WL (2011) Infrared spectroscopy of Titania Sol-gel coatings on 316 L stainless steel. Mater Sci Appl 2:1375–1382. doi:10.4236/msa.2011.210186

    CAS  Google Scholar 

  33. Fan Y, Lu HT, Liu JH, Yang CP, Jing QS, Zhang YX, Yang XK, Huang KJ (2011) Hydrothermal preparation and electrochemical sensing properties of TiO2-graphene nanocomposite. Colloids Surf B 83:78–82. doi:10.1016/j.colsurfb.2010.10.048

    Article  CAS  Google Scholar 

  34. How GTS, Pandikumar A, Ming HN, Ngee LH (2014) Highly exposed {001} facets of titanium dioxide modified with reduced graphene oxide for dopamine sensing. Sci Rep 4(5044):1–8. doi:10.1038/srep05044

    Google Scholar 

  35. Song Y, Hu H, Feng M, Zhan H (2015) Carbon nanotubes with tailored density of electronic states for electrochemical applications. ACS Appl Mater Interfaces 7:25793–25803. doi:10.1021/acsami.5b07700

    Article  CAS  Google Scholar 

  36. Arvand M, Ghodsi N (2014) Electrospun TiO2 nanofiber / graphite oxide modified electrode for electrochemical detection of l-DOPA in human cerebrospinal fluid. Sensors Actuators B Chem 204:393–401. doi:10.1016/j.snb.2014.07.110

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge DST-FIST program of School of Physics, Madurai Kamaraj University for providing XRD facility and DST-PURSE program of School of Physics, Madurai Kamaraj University for providing AFM and UGC-UPE program of Madurai Kamaraj University for HR-TEM facility. This research was supported by University Grants Commission Major project Grant No.: MRP-MAJOR-CHEM-2013-36681. D.S.R. J and K.J. B gratefully acknowledge UGC- New Delhi and Madurai Kamaraj University, Madurai for Non-NET fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to George peter Gnana kumar or Kunjithapatham Sethuraman.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 676 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Josephine, D.S.R., Babu, K.J., Gnana kumar, G.p. et al. Titanium dioxide anchored graphene oxide nanosheets for highly selective voltammetric sensing of dopamine. Microchim Acta 184, 781–790 (2017). https://doi.org/10.1007/s00604-016-2015-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-2015-0

Keywords

Navigation