Skip to main content

Advertisement

Log in

Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Functionalized nanocomposites based on various type of graphene nanomaterials including graphene, graphene oxides (GOs), and doped graphene (oxides) are widely used as materials for various sensors that can display high sensitivity, selectivity and stability. This review with 347 references summarizes advances in the preparation and functionalization of graphene nanocomposites for the application of electrochemical sensors and biosensors. Following a general introduction into the field, the article is divided into subsections on (a) the synthesis and functionalization of nanocomposites (made from graphene, various kinds of GOs, heteroatom-doped GOs), (b) on methods for functionalization of composites (with other carbon nanomaterials, metal nanoparticles, metal oxide and metal sulfide nanoparticles), (c) on functionalization with inorganic materials including polyoxometalates, hexacyanoferrates, minerals), (d) on functionalization with organic materials such as amino acids, surfactants, organic dyes, ionic liquids, macrocycles (including cyclodextrins, crown ethers and calixarenes), and (e) on functionalization with organometallics and with various other organic compounds, (f) on functionalizations with polymers such as conventional polymers, polyelectrolytes, conducting polymers, molecularly imprinted polymers, (g) on functionalization with biomolecules including proteins and nucleic acids. Other subsections cover flexible graphene and GO based nanocomposites and 3D composites. Application of graphene and GO nanocomposites are then covered in a in large section that comprises electrochemical sensors and biosensors (based on voltammetry, amperometry, potentiometry, impedimetry, electrochemiluminescence, photoelectrochemistry, field effect transistors, electrochemical immunosensors) with specific subsections on gas sensors, enzymatic biosensors and gene sensors. A concluding section covers current challenges and perspectives of graphene and GO based (bio)sensing.

Illustration of electroanalytical applications of graphene functionalized with various materials, including carbon nanotube (CNT), fullerene (C60), nanodiamond (ND), nanoparticle (NP), polyoxometalate (POM), metal hexacyanoferrate (MHCF), metalphthalocyanine (MPc), cyclodextrin (CD), poly(sodium 4-styrenesulfonate) (PSS), chitosan (CHIT), DNA and enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669. doi:10.1126/science.1102896

    Article  CAS  Google Scholar 

  2. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb Carbon: A Review of Graphene. Chem Rev 110:132–145. doi:10.1021/cr900070d

    Article  CAS  Google Scholar 

  3. Dreyer DR, Todd AD, Bielawski CW (2014) Harnessing the chemistry of graphene oxide. Chem Soc Rev 43(15):5288–5301. doi:10.1039/c4cs00060a

    Article  CAS  Google Scholar 

  4. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214. doi:10.1021/cr3000412

    Article  CAS  Google Scholar 

  5. Bai S, Shen X (2012) Graphene–inorganic nanocomposites. RSC Adv 2(1):64–98. doi:10.1039/c1ra00260k

    Article  CAS  Google Scholar 

  6. Fitzer E, Kochling K-H, Boehm HP, Marsh H (1995) Recommended terminology for the description of carbon as a solid. Pure Appl Chem 67(3):473–506. doi:10.1351/pac199567030473

    Article  Google Scholar 

  7. Ambrosi A, Chua CK, Bonanni A, Pumera M (2014) Electrochemistry of graphene and related materials. Chem Rev 114(14):7150–7188. doi:10.1021/cr500023c

    Article  CAS  Google Scholar 

  8. Zhu Y, James DK, Tour JM (2012) New routes to graphene, graphene oxide and their related applications. Adv Mater 24(36):4924–4955. doi:10.1002/adma.201202321

    Article  CAS  Google Scholar 

  9. Kochmann S, Hirsch T, Wolfbeis OS (2012) Graphenes in chemical sensors and biosensors. TrAC, Trends Anal Chem 39:87–113. doi:10.1016/j.trac.2012.06.004

  10. Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112(11):6027–6053. doi:10.1021/cr300115g

    Article  CAS  Google Scholar 

  11. Paredes JI, Villar-Rodil S, Fernández-Merino MJ, Guardia L, Martínez-Alonso A, Tascón JMD (2011) Environmentally friendly approaches toward the mass production of processable graphene from graphite oxide. J Mater Chem 21(2):298–306. doi:10.1039/c0jm01717e

    Article  CAS  Google Scholar 

  12. Song J, Qiao J, Shuang S, Guo Y, Dong C (2012) Synthesis of neutral red covalently functionalized graphene nanocomposite and the electrocatalytic properties toward uric acid. J Mater Chem 22(2):602–608. doi:10.1039/c1jm13233d

    Article  Google Scholar 

  13. Luo JH, Li BL, Li NB, Luo HQ (2013) Sensitive detection of gallic acid based on polyethyleneimine-functionalized graphene modified glassy carbon electrode. Sensors Actuators B Chem 186:84–89. doi:10.1016/j.snb.2013.05.074

    Article  CAS  Google Scholar 

  14. Guo S, Wen D, Zhai Y, Dong S, Wang E (2010) Platinum Nanoparticle Ensemble-on-Graphene Hybrid Nanosheet One-Pot Rapid Synthesis and Used as New Electrode Material for Electrochemical Sensing. ACS Nano 4(7):3959–3968. doi:10.1021/nn100852h

    Article  CAS  Google Scholar 

  15. Wang Y, Xiao Y, Ma X, Li N, Yang X (2012) Label-free and sensitive thrombin sensing on a molecularly grafted aptamer on graphene. Chem Commun (Camb) 48(5):738–740. doi:10.1039/c1cc15429j

    Article  CAS  Google Scholar 

  16. Fan Z, Liu B, Liu X, Li Z, Wang H, Yang S, Wang J (2013) A flexible and disposable hybrid electrode based on Cu nanowires modified graphene transparent electrode for non-enzymatic glucose sensor. Electrochim Acta 109:602–608. doi:10.1016/j.electacta.2013.07.153

    Article  CAS  Google Scholar 

  17. Liu Y, Dong X, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41(6):2283–2307. doi:10.1039/c1cs15270j

    Article  CAS  Google Scholar 

  18. Chen XM, Wu GH, Jiang YQ, Wang YR, Chen X (2011) Graphene and graphene-based nanomaterials: the promising materials for bright future of electroanalytical chemistry. Analyst 136(22):4631–4640. doi:10.1039/c1an15661f

    Article  CAS  Google Scholar 

  19. Fang Y, Wang E (2013) Electrochemical biosensors on platforms of graphene. Chem Commun (Camb) 49(83):9526–9539. doi:10.1039/c3cc44735a

    Article  CAS  Google Scholar 

  20. Lei W, Si W, Xu Y, Gu Z, Hao Q (2014) Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchim Acta 181:707–722. doi:10.1007/s00604-014-1160-6

    Article  CAS  Google Scholar 

  21. Gan T, Hu S (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175(1–2):1–19. doi:10.1007/s00604-011-0639-7

    Article  CAS  Google Scholar 

  22. Zheng D, Hu H, Liu X, Hu S (2015) Application of graphene in elctrochemical sensing. Curr Opin Colloid Interface Sci 20(5–6):383–405. doi:10.1016/j.cocis.2015.10.011

    Article  CAS  Google Scholar 

  23. Wang Y, Hu S (2016) Applications of Carbon Nanotubes and Graphene for Electrochemical Sensing of Environmental Pollutants. J Nanosci Nanotechnol 16:7852–7872. doi:10.1166/jnn.2016.12762

    Article  Google Scholar 

  24. Gan T, Hu C, Sun Z, Hu S (2013) Facile synthesis of water-soluble fullerene–graphene oxide composites for electrodeposition of phosphotungstic acid-based electrocatalysts. Electrochim Acta 111:738–745. doi:10.1016/j.electacta.2013.08.059

    Article  CAS  Google Scholar 

  25. Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene. Anal Chem 81:2378–2382. doi:10.1021/ac802193c

    Article  CAS  Google Scholar 

  26. Hu S, Huang Q, Lin Y, Wei C, Zhang H, Zhang W, Guo Z, Bao X, Shi J, Hao A (2014) Reduced graphene oxide-carbon dots composite as an enhanced material for electrochemical determination of dopamine. Electrochim Acta 130:805–809. doi:10.1016/j.electacta.2014.02.150

    Article  CAS  Google Scholar 

  27. Zhan H, Li J, Liu Z, Zheng Y, Jing Y (2015) A highly sensitive electrochemical OP biosensor based on electrodeposition of Au–Pd bimetallic nanoparticles onto a functionalized graphene modified glassy carbon electrode. Anal Methods 7(9):3903–3911. doi:10.1039/c5ay00702j

    Article  CAS  Google Scholar 

  28. Feng X-M, Li R-M, Ma Y-W, Chen R-F, Shi N-E, Fan Q-L, Huang W (2011) One-Step Electrochemical Synthesis of Graphene/Polyaniline Composite Film and Its Applications. Adv Funct Mater 21(15):2989–2996. doi:10.1002/adfm.201100038

    Article  CAS  Google Scholar 

  29. Bonanni A, Chua CK, Pumera M (2014) Rational design of carboxyl groups perpendicularly attached to a graphene sheet: a platform for enhanced biosensing applications. Chemistry 20(1):217–222. doi:10.1002/chem.201303582

    Article  CAS  Google Scholar 

  30. Srivastava RK, Srivastava S, Narayanan TN, Mahlotra BD, Vajtai R, Ajayan PM, Srivastava A (2012) Functionalized Multilayered Graphene Platform for Urea Sensor. ACS Nano 6(1):168–175. doi:10.1021/nn203210s

    Article  CAS  Google Scholar 

  31. Wang X, Sun G, Routh P, Kim DH, Huang W, Chen P (2014) Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev 43(20):7067–7098. doi:10.1039/c4cs00141a

    Article  CAS  Google Scholar 

  32. Zhang W, Wu L, Li Z, Liu Y (2015) Doped graphene: synthesis, properties and bioanalysis. RSC Adv 5(61):49521–49533. doi:10.1039/c5ra05051k

    Article  CAS  Google Scholar 

  33. Shi L, Niu X, Liu T, Zhao H, Lan M (2015) Electrocatalytic sensing of hydrogen peroxide using a screen printed carbon electrode modified with nitrogen-doped graphene nanoribbons. Microchim Acta 182:2485–2493. doi:10.1007/s00604-015-1605-6

    Article  CAS  Google Scholar 

  34. Ma FX, Wang J, Wang FB, Xia XH (2015) The room temperature electrochemical synthesis of N-doped graphene and its electrocatalytic activity for oxygen reduction. Chem Commun (Camb) 51(7):1198–1201. doi:10.1039/c4cc07402e

    Article  CAS  Google Scholar 

  35. Yeh M-H, Li Y-S, Chen G-L, Lin L-Y, Li T-J, Chuang H-M, Hsieh C-Y, Lo S-C, Chiang W-H, Ho K-C (2015) Facile Synthesis of Boron-doped Graphene Nanosheets with Hierarchical Microstructure at Atmosphere Pressure for Metal-free Electrochemical Detection of Hydrogen Peroxide. Electrochim Acta 172:52–60. doi:10.1016/j.electacta.2015.01.210

    Article  CAS  Google Scholar 

  36. Tian Y, Liu Y, Wang WP, Zhang X, Peng W (2015) CuO nanoparticles on sulfur-doped graphene for nonenzymatic glucose sensing. Electrochim Acta 156:244–251. doi:10.1016/j.electacta.2015.01.016

    Article  CAS  Google Scholar 

  37. Hu C, Hu S (2009) Carbon Nanotube-Based Electrochemical Sensors: Principles and Applications in Biomedical Systems. J Sens 2009:1–40. doi:10.1155/2009/187615

    Article  CAS  Google Scholar 

  38. Han J, Wang Q, Zhai J, Han L, Dong S (2015) An amperometric sensor for detection of tryptophan based on a pristine multi-walled carbon nanotube/graphene oxide hybrid. Analyst 140(15):5295–5300. doi:10.1039/c5an00410a

    Article  CAS  Google Scholar 

  39. Zhu G, Yi Y, Zou B, Liu Z, Sun J, Wu X (2015) A glassy carbon electrode modified with a multiwalled carbon nanotube@reduced graphene oxide nanoribbon core-shell structure for electrochemical sensing of p-dihydroxybenzene. Microchim Acta 182:871–877. doi:10.1007/s00604-014-1401-8

    Article  CAS  Google Scholar 

  40. Svec M, Merino P, Dappe YJ, Gonzalez C, Abad E, Jelınek P, Martın-Gago JA (2012) van derWaals interactions mediating the cohesion of fullerenes on graphene. Phys Rev B 86:121407(R). doi:10.1103/PhysRevB.86.121407

  41. Castelaín M, Martínez G, Merino P, Martín-Gago J, Segura JA, Ellis G, Salavagione HJ (2012) Graphene Functionalisation with a Conjugated Poly(fluorene) by Click Coupling: Striking Electronic Properties in Solution. Chem Eur J 18:4965–4973. doi:10.1002/chem.201102008

    Article  CAS  Google Scholar 

  42. Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115(11):4744–4822. doi:10.1021/cr500304f

    Article  CAS  Google Scholar 

  43. Dong L, Zang J, Su J, Jia Y, Wang Y, Lu J, Xu X (2015) Nanodiamond/nitrogen-doped graphene (core/shell) as an effective and stable metal-free electrocatalyst for oxygen reduction reaction. Electrochim Acta 174:1017–1022. doi:10.1016/j.electacta.2015.06.057

    Article  CAS  Google Scholar 

  44. Liang Y, Li Y, Wang H, Dai H (2013) Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J Am Chem Soc 135(6):2013–2036. doi:10.1021/ja3089923

    Article  CAS  Google Scholar 

  45. Cui S, Mao S, Lu G, Chen J (2013) Graphene Coupled with Nanocrystals: Opportunities and Challenges for Energy and Sensing Applications. J Phys Chem Lett 4(15):2441–2454. doi:10.1021/jz400976a

    Article  CAS  Google Scholar 

  46. Aslan S, Anik Ü (2016) Microbial glucose biosensors based on glassy carbon paste electrodes modified with Gluconobacter Oxydans and graphene oxide or graphene-platinum hybrid nanoparticles. Microchim Acta 183:73–81. doi:10.1007/s00604-015-1590-9

    Article  CAS  Google Scholar 

  47. Chen N, Cheng Y, Li C, Zhang C, Zhao K, Xian Y (2015) Determination of melamine in food contact materials using an electrode modified with gold nanoparticles and reduced graphene oxide. Microchim Acta 182:1967–1975. doi:10.1007/s00604-015-1533-5

    Article  CAS  Google Scholar 

  48. Ye Y, Ding S, Ye Y, Xu H, Cao X, Liu S, Sun H (2015) Enzyme-based sensing of glucose using a glassy carbon electrode modified with a one-pot synthesized nanocomposite consisting of chitosan, reduced graphene oxide and gold nanoparticles. Microchim Acta 182:1783–1789. doi:10.1007/s00604-015-1512-x

    Article  CAS  Google Scholar 

  49. Li X-R, Xu M-C, Chen H-Y, Xu J-J (2015) Bimetallic Au@Pt@Au core–shell nanoparticles on graphene oxide nanosheets for high-performance H2O2 bi-directional sensing. J Mater Chem B 3(21):4355–4362. doi:10.1039/c5tb00312a

    Article  CAS  Google Scholar 

  50. Li J, Liu J, Tan G, Jiang J, Peng S, Deng M, Qian D, Feng Y, Liu Y (2014) High-sensitivity paracetamol sensor based on Pd/graphene oxide nanocomposite as an enhanced electrochemical sensing platform. Biosens Bioelectron 54:468–475. doi:10.1016/j.bios.2013.11.001

    Article  CAS  Google Scholar 

  51. Li J, Feng H, Li J, Jiang J, Feng Y, He L, Qian D (2015) Bimetallic Ag-Pd nanoparticles-decorated graphene oxide: a fascinating three-dimensional nanohybrid as an efficient electrochemical sensing platform for vanillin determination. Electrochim Acta 176:827–835. doi:10.1016/j.electacta.2015.07.091

    Article  CAS  Google Scholar 

  52. Yang Z, Qi C, Zheng X, Zheng J (2016) Sensing hydrogen peroxide with a glassy carbon electrode modifiedwith silver nanoparticles, AlOOH and reduced graphene oxide. Microchim Acta 183:1131–1136. doi:10.1007/s00604-016-1743-5

    Article  CAS  Google Scholar 

  53. Hu X, Pan D, Lin M, Han H, Li F (2016) Graphene oxide-assisted synthesis of bismuth nanosheets for catalytic stripping voltammetric determination of iron in coastal waters. Microchim Acta:855–861. doi:10.1007/s00604–015-1733-z

  54. Zhang B, He Y, Liu B, Tang D (2015) Nickel-functionalized reduced graphene oxide with polyaniline for non-enzymatic glucose sensing. Microchim Acta 182:625–631. doi:10.1007/s00604-014-1366-7

    Article  CAS  Google Scholar 

  55. Noor AM, Shahid M, Rameshkumar P, Huang NM (2016) A glassy carbon electrode modified with graphene oxide and silver nanoparticles for amperometric determination of hydrogen peroxide. Microchim Acta 183(2):911–916. doi:10.1007/s00604-015-1679-1

    Article  CAS  Google Scholar 

  56. Zhao L, Wu G, Cai Z, Zhao T, Yao Q, Chen X (2015) Ultrasensitive non-enzymatic glucose sensing at near-neutral pH values via anodic stripping voltammetry using a glassy carbon electrode modified with Pt3Pd nanoparticles and reduced graphene oxide. Microchim Acta 182(11–12):2055–2060. doi:10.1007/s00604-015-1555-z

    Article  CAS  Google Scholar 

  57. Wang P, Liu Z-G, Chen X, Meng F-L, Liu J-H, Huang X-J (2013) UV irradiation synthesis of an Au–graphene nanocomposite with enhanced electrochemical sensing properties. J Mater Chem A 1(32):9189–9195. doi:10.1039/c3ta11155e

    Article  CAS  Google Scholar 

  58. Nayak P, Nair SP, Ramaprabhu S (2016) Enzyme-less and low-potential sensing of glucose using a glassy carbon electrode modified with palladium nanoparticles deposited on graphene-wrapped carbon nanotubes. Microchim Acta 183:1055–1062. doi:10.1007/s00604-015-1729-8

    Article  CAS  Google Scholar 

  59. He Y, Zheng J, Dong S (2012) Ultrasonic-electrodeposition of hierarchical flower-like cobalt on petalage-like graphene hybrid microstructures for hydrazine sensing. Analyst 137(20):4841–4848. doi:10.1039/c2an35672d

    Article  CAS  Google Scholar 

  60. Wang G, Shi G, Chen X, Yao R, Chen F (2015) A glassy carbon electrode modified with graphene quantum dots and silver nanoparticles for simultaneous determination of guanine and adenine. Microchim Acta 182:315–322. doi:10.1007/s00604-014-1335-1

    Article  CAS  Google Scholar 

  61. Devasenathipathy R, Karthik R, Chen S-M, Ali MA, Mani V, Lou B-S, Al-Hemaid FMA (2015) Enzymatic glucose biosensor based on bismuth nanoribbons electrochemically deposited on reduced graphene oxide. Microchim Acta 182:2165–2172. doi:10.1007/s00604-015-1545-1

    Article  CAS  Google Scholar 

  62. Kumar MK, Prataap RKV, Mohan S, Jha SK (2016) Preparation of electro-reduced graphene oxide supported walnut shape nickel nanostructures, and their application to selective detection of dopamine. Microchim Acta 183:1759–1768. doi:10.1007/s00604-016-1806-7

    Article  CAS  Google Scholar 

  63. Cui X, Wu S, Li Y, Wan GG (2015) Sensing hydrogen peroxide using a glassy carbon electrode modified with in-situ electrodeposited platinum-gold bimetallic nanoclusters on a graphene surface. Microchim Acta 182:265–272. doi:10.1007/s00604-014-1321-7

    Article  CAS  Google Scholar 

  64. Lu L, Liu B, Leng J, Wang K, Ma X, Wu S (2016) Electrochemical sandwich immunoassay for human epididymis-specific protein 4 using a screen-printed electrode modified with graphene sheets and gold nanoparticles, and applying a modularmagnetic detector device produced by 3D laser sintering. Microchim Acta 183:837–843. doi:10.1007/s00604-015-1727-x

    Article  CAS  Google Scholar 

  65. Hsieh Y-S, Hong B-D, Lee C-L (2016) Non-enzymatic sensing of dopamine using a glassy carbon electrode modified with a nanocomposite consisting of palladium nanocubes supported on reduced graphene oxide in a nafion matrix. Microchim Acta 183:905–910. doi:10.1007/s00604-015-1668-4

    Article  CAS  Google Scholar 

  66. Singal S, Srivastava AK, Gahtori B, Rajesh (2016) Immunoassay for troponin I using a glassy carbon electrode modified with a hybrid film consisting of graphene and multiwalled carbon nanotubes and decorated with platinum nanoparticles. Microchim Acta 183:1375–1384. doi:10.1007/s00604-016-1759-x

  67. Low SS, Tan MT, Loh HS, Khiew PS, Chiu WS (2016) Facile hydrothermal growth graphene/ZnO nanocomposite for development of enhanced biosensor. Anal Chim Acta 903:131–141. doi:10.1016/j.aca.2015.11.006

    Article  CAS  Google Scholar 

  68. Marlinda AR, Pandikumar A, Yusoff N, Huang NM, Lim HN (2015) Electrochemical sensing of nitrite using a glassy carbon electrode modified with reduced functionalized graphene oxide decorated with flower-like zinc oxide. Microchim Acta 182:1113–1122. doi:10.1007/s00604-014-1436-x

    Article  CAS  Google Scholar 

  69. Zhao X, Du Y, Ye W, Lu D, Xia X, Wang C (2013) Sensitive determination of thymol based on CeO2 nanoparticle–decorated graphene hybrid film. New J Chem 37(12):4045–4051. doi:10.1039/c3nj01059g

    Article  CAS  Google Scholar 

  70. Yao Z, Yang X, Wu F, Wu W, Wu F (2016) Synthesis of differently sized silver nanoparticles on a screen-printed electrode sensitized with a nanocomposites consisting of reduced graphene oxide and cerium(IV) oxide for nonenzymatic sensing of hydrogen peroxide. Microchim Acta 183. doi:10.1007/s00604–016–1924-2

  71. Wu Q, Sheng Q, Zheng J (2016) Nonenzymatic amperometric sensing of hydrogen peroxide using a glassy carbon electrode modified with a sandwich-structured nanocomposite consisting of silver nanoparticles, Co3O4 and reduced graphene oxide. Microchim Acta 183:1943–1951. doi:10.1007/s00604-016-1829-0

    Article  CAS  Google Scholar 

  72. Yang S, Li G, Wang Y, Wang G, Qu L (2016) Amperometric L-cysteine sensor based on a carbon paste electrode modified with Y2O3 nanoparticles supported on nitrogen-doped reduced graphene oxide. Microchim Acta 183:1351–1357. doi:10.1007/s00604-015-1737-8

    Article  CAS  Google Scholar 

  73. Chen M, Zhang C, Li L, Liu Y, Li X, Xu X, Xia F, Wang W, Gao J (2013) Sn powder as reducing agents and SnO2 precursors for the synthesis of SnO2-reduced graphene oxide hybrid nanoparticles. ACS Appl Mater Interfaces 5(24):13333–13339. doi:10.1021/am404195u

    Article  CAS  Google Scholar 

  74. Mei L-P, Feng J-J, Wu L, Chen J-R, Shen L, Xie Y, Wang A-J (2016) A glassy carbon electrode modified with porous Cu2O nanospheres on reduced graphene oxide support for simultaneous sensing of uric acid and dopamine with high selectivity over ascorbic acid. Microchim Acta 183:2039–2046. doi:10.1007/s00604-016-1845-0

    Article  CAS  Google Scholar 

  75. Mei L-P, Song P, Feng J-J, Shen J-H, Wang W, Wang A-J, Weng X (2015) Nonenzymatic amperometric sensing of glucose using a glassy carbon electrode modified with a nanocomposite consisting of reduced graphene oxide decorated with Cu2O nanoclusters. Microchim Acta 182:1701–1708. doi:10.1007/s00604-015-1501-0

    Article  CAS  Google Scholar 

  76. Yang A, Xue Y, Zhao H, Li X, Yuan Z (2015) One-pot synthesis of ternary hybrid nanomaterial composed of a porphyrin-functionalized graphene, tin oxide, and gold nanoparticles, and its application to the simultaneous determination of epinephrine and uric acid. Microchim Acta 182:341–349. doi:10.1007/s00604-014-1328-0

    Article  CAS  Google Scholar 

  77. Rao D, Zhang X, Sheng Q, Zheng J (2016) Highly improved sensing of dopamine by using glassy carbon electrodemodified with MnO2, graphene oxide, carbon nanotubes and gold nanoparticles. Microchim Acta 183:2597–2604. doi:10.1007/s00604-016-1902-8

    Article  CAS  Google Scholar 

  78. Dhara K, Thiagarajan R, Nair BG, Thekkedath GSB (2015) Highly sensitive and wide-range nonenzymatic disposable glucose sensor based on a screen printed carbon electrode modified with reduced graphene oxide and Pd-CuO nanoparticles. Microchim Acta 182:2183–2192. doi:10.1007/s00604-015-1549-x

    Article  CAS  Google Scholar 

  79. Velmurugan M, Karikalan N, Chen S-M, Karuppiah C (2016) Core-shell like Cu2O nanocubes enfolded with Co(OH)2 on reduced graphene oxide for the amperometric detection of caffeine. Microchim Acta 183. doi:10.1007/s00604–016–1914-4

  80. Vilian ATE, Chen S-M, Hung Y-T, Ali MA, Al-Hemaid FMA (2014) Electrochemical oxidation and determination of norepinephrine in the presence of acetaminophen using MnO2 nanoparticle decorated reduced graphene oxide sheets. Anal Methods 6(16):6504–6513. doi:10.1039/c4ay00878b

    Article  CAS  Google Scholar 

  81. Liu B, Ouyang X, Ding Y, Luo L, Xu D, Ning Y (2016) Electrochemical preparation of nickel and copper oxides-decorated graphene composite for simultaneous determination of dopamine, acetaminophen and tryptophan. Talanta 146:114–121. doi:10.1016/j.talanta.2015.08.034

    Article  CAS  Google Scholar 

  82. Du D, Liu J, Zhang X, Cui X, Lin Y (2011) One-step electrochemical deposition of a graphene-ZrO2 nanocomposite: Preparation, characterization and application for detection of organophosphorus agents. J Mater Chem 21(22):8032–8037. doi:10.1039/c1jm10696a

    Article  CAS  Google Scholar 

  83. Heidari H, Habibi E (2016) Amperometric enzyme-free glucose sensor based on the use of a reduced graphene oxide paste electrode modified with electrodeposited cobalt oxide nanoparticles. Microchim Acta 183(7):2259–2266. doi:10.1007/s00604-016-1862-z

    Article  CAS  Google Scholar 

  84. Li S-J, Hou L-L, Yuan B-Q, Chang M-Z, Ma Y, Du J-M (2016) Enzyme-free glucose sensor using a glassy carbon electrode modified with reduced graphene oxide decorated with mixed copper and cobalt oxides. Microchim Acta 183:1813–1821. doi:10.1007/s00604-016-1817-4

    Article  CAS  Google Scholar 

  85. Ma H-F, Chen T-T, Luo Y, Kong F-Y, Fan D-H, Fang H-L, Wang W (2015) Electrochemical determination of dopamine using octahedral SnO2 nanocrystals bound to reduced graphene oxide nanosheets. Microchim Acta 182:2001–2007. doi:10.1007/s00604-015-1521-9

    Article  CAS  Google Scholar 

  86. Rocha-Santos TAP (2014) Sensors and biosensors based on magnetic nanoparticles. TrAC Trends Anal Chem 62:28–36. doi:10.1016/j.trac.2014.06.016

    Article  CAS  Google Scholar 

  87. Ríos Á, Zougagh M Recent advances in magnetic nanomaterials for improving analytical processes. TrAC, Trends Anal Chem. doi:10.1016/j.trac.2016.03.001

  88. Zhu MY, Diao GW (2011) Review on the progress in synthesis and application of magnetic carbon nanocomposites. Nanoscale 3(7):2748–2767. doi:10.1039/c1nr10165j

    Article  CAS  Google Scholar 

  89. Zhang Y, Cheng Y, Zhou Y, Li B, Gu W, Shi X, Xian Y (2013) Electrochemical sensor for bisphenol A based on magnetic nanoparticles decorated reduced graphene oxide. Talanta 107:211–218. doi:10.1016/j.talanta.2013.01.012

    Article  CAS  Google Scholar 

  90. Li X, Wang X, Leilei Li HD, Luo C (2015) Electrochemical sensor based on magnetic graphene oxide@gold nanoparticles-molecular imprinted polymers for determination of dibutyl phthalate. Talanta 131:354–360. doi:10.1016/j.talanta.2014.07.028

    Article  CAS  Google Scholar 

  91. Farzin L, Shamsipur M, Sheibani S (2016) Solid phase extraction of hemin from serum of breast cancer patients using an ionic liquid coated Fe3O4/graphene oxide nanocomposite, and its quantitation by using FAAS. Microchim Acta 183:2623–2631. doi:10.1007/s00604-016-1906-4

    Article  CAS  Google Scholar 

  92. Bagheri H, Afkhami A, Hashemi P, Ghanei M (2015) Simultaneous and sensitive determination of melatonin and dopamine with Fe3O4 nanoparticle-decorated reduced graphene oxide modified electrode. RSC Adv 5(28):21659–21669. doi:10.1039/c4ra16802j

    Article  CAS  Google Scholar 

  93. Zou X, Zhang L, Wang Z, Luo Y (2016) Mechanisms of the Antimicrobial Activities of Graphene Materials. J Am Chem Soc 138(7):2064–2077. doi:10.1021/jacs.5b11411

    Article  CAS  Google Scholar 

  94. Liu F, Deng W, Zhang Y, Ge S, Yu J, Yan M (2014) Highly sensitive hybridization assay using the electrochemiluminescence of an ITO electrode, CdTe quantum dots functionalized with hierarchical nanoporous PtFe nanoparticles, and magnetic graphene nanosheets. Microchim Acta 181:213–222. doi:10.1007/s00604-013-1102-8

    Article  CAS  Google Scholar 

  95. Zheng X, Zhu Q, Song H, Zhao X, Yi T, Chen H, Chen X (2015) In Situ Synthesis of Self-Assembled Three-Dimensional Graphene − Magnetic Palladium Nanohybrids with Dual-Enzyme Activity through One-Pot Strategy and Its Application in Glucose Probe. ACS Appl Mater Interfaces 7:3480–3491. doi:10.1021/am508540x

    CAS  Google Scholar 

  96. Afkhami A, Khoshsafar H, Bagheri H, Madrakian T (2014) Preparation of NiFe2O4/graphene nanocomposite and its application as a modifier for the fabrication of an electrochemical sensor for the simultaneous determination of tramadol and acetaminophen. Anal Chim Acta 831:50–59. doi:10.1016/j.aca.2014.04.061

    Article  CAS  Google Scholar 

  97. Roy E, Patra S, Kumar D, Madhuri R, Sharma PK (2015) Multifunctional magnetic reduced graphene oxide dendrites: Synthesis, characterization and their applications. Biosens Bioelectron 68:726–735. doi:10.1016/j.bios.2015.01.072

    Article  CAS  Google Scholar 

  98. Sun B, Gou Y, Ma Y, Zheng X, Bai R, Abdelmoaty AAA, Hu F (2016) Investigate electrochemical immunosensor of cortisol based on gold nanoparticles/magnetic functionalized reduced graphene oxide. Biosens Bioelectron. doi:10.1016/j.bios.2016.07.047

    Google Scholar 

  99. Gao N, Fang X (2015) Synthesis and Development of Graphene-Inorganic Semiconductor Nanocomposites. Chem Rev 115(16):8294–8343. doi:10.1021/cr400607y

    Article  CAS  Google Scholar 

  100. Bai J, Jiang X (2013) A facile one-pot synthesis of copper sulfide-decorated reduced graphene oxide composites for enhanced detecting of H2O2 in biological environments. Anal Chem 85(17):8095–8101. doi:10.1021/ac400659u

    Article  CAS  Google Scholar 

  101. Giribabu K, Oh SY, Suresh R, Kumar SP, Manigandan R, Munusamy S, Gnanamoorthy G, Kim JY, Huh YS, Narayanan V (2016) Sensing of picric acid with a glassy carbon electrode modified with CuS nanoparticles deposited on nitrogen-doped reduced graphene oxide. Microchim Acta 183:2421–2430. doi:10.1007/s00604-016-1883-7

    Article  CAS  Google Scholar 

  102. Hu S, Zhang W, Zheng J, Shi J, Lin Z, Zhong L, Cai G, Wei C, Zhang H, Hao A (2015) One step synthesis cadmium sulphide/reduced graphene oxide sandwiched film modified electrode for simultaneous electrochemical determination of hydroquinone, catechol and resorcinol. RSC Adv 5(24):18615–18621. doi:10.1039/c4ra16268d

    Article  CAS  Google Scholar 

  103. Huang K-J, Wang L, Liu Y-J, Gan T, Liu Y-M, Wang L-L, Fan Y (2013) Synthesis and electrochemical performances of layered tungsten sulfide-graphene nanocomposite as a sensing platform for catechol, resorcinol and hydroquinone. Electrochim Acta 107:379–387. doi:10.1016/j.electacta.2013.06.060

    Article  CAS  Google Scholar 

  104. Xing L, Ma Z (2016) A glassy carbon electrode modified with a nanocomposite consisting of MoS2 and reduced graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine, and uric acid. Microchim Acta 183:257–263. doi:10.1007/s00604-015-1648-8

    Article  CAS  Google Scholar 

  105. Zhao X, Xia X, Yu S, Wang C (2014) An electrochemical sensor for honokiol based on a glassy carbon electrode modified with MoS2/graphene nanohybrid film. Anal Methods 6(23):9375–9382. doi:10.1039/c4ay01790k

    Article  CAS  Google Scholar 

  106. VeerappanMani GM, Chen S-M, Karthik R, Huang S-T (2016) Determination of dopamine using a glassy carbon electrode modified with a graphene and carbon nanotube hybrid decorated with molybdenum disulfide flowers. Microchim Acta 183:2267–2275. doi:10.1007/s00604-016-1864-x

    Article  CAS  Google Scholar 

  107. Radhakrishnan S, Kim SJ (2015) Facile fabrication of NiS and a reduced graphene oxide hybrid film for nonenzymatic detection of glucose. RSC Adv 5(55):44346–44352. doi:10.1039/c5ra01074h

    Article  CAS  Google Scholar 

  108. Wang Y, Weinstock IA (2012) Polyoxometalate-decorated nanoparticles. Chem Soc Rev 41(22):7479–7496. doi:10.1039/c2cs35126a

    Article  CAS  Google Scholar 

  109. Zhang W, Du D, Gunaratne D, Colby R, Lin Y, Laskin J (2014) Polyoxometalate-Graphene Nanocomposite Modified Electrode for Electrocatalytic Detection of Ascorbic Acid. Electroanalysis 26(1):178–183. doi:10.1002/elan.201300343

    Article  CAS  Google Scholar 

  110. Gan T, Hu C, Chen Z, Hu S (2010) Fabrication and application of a novel plant hormone sensor for the determination of methyl jasmonate based on self-assembling of phosphotungstic acid–graphene oxide nanohybrid on graphite electrode. Sensors Actuators B Chem 151(1):8–14. doi:10.1016/j.snb.2010.10.001

    Article  CAS  Google Scholar 

  111. Guo W, Tong X, Liu S (2015) Polyoxometalate/chitosan–electrochemically reduced graphene oxide as effective mediating systems for electrocatalytic reduction of persulfate. Electrochim Acta 173:540–550. doi:10.1016/j.electacta.2015.05.097

    Article  CAS  Google Scholar 

  112. Cao L, Liu Y, Zhang B, Lu L (2010) In situ controllable growth of Prussian blue nanocubes on reduced graphene oxide: facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 reduction. ACS Appl Mater Interfaces 2(8):2339–2346. doi:10.1021/am100372m

    Article  CAS  Google Scholar 

  113. Chen R, Zhang Q, Gu Y, Tang L, Li C, Zhang Z (2015) One-pot green synthesis of Prussian blue nanocubes decorated reduced graphene oxide using mushroom extract for efficient 4-nitrophenol reduction. Anal Chim Acta 853:579–587. doi:10.1016/j.aca.2014.10.049

    Article  CAS  Google Scholar 

  114. Luo X, Pan J, Pan K, Yu Y, Zhong A, Wei S, Li J, Shi J, Li X (2015) An electrochemical sensor for hydrazine and nitrite based on graphene–cobalt hexacyanoferrate nanocomposite: Toward environment and food detection. J Electroanal Chem 745:80–87. doi:10.1016/j.jelechem.2015.03.017

    Article  CAS  Google Scholar 

  115. Zhang H, Gao Q, Li H (2016) A novel photoelectrochemical hydrogen peroxide sensor based on nickel(II)-potassium hexacyanoferrate-graphene hybrid materials modified n-silicon electrode. J Solid State Electrochem. doi:10.1007/s10008-016-3156-0

    Google Scholar 

  116. Devadas B, Madhu R, Chen S-M, Yeh H-T (2014) Controlled electrochemical synthesis of new rare earth metal lutetium hexacyanoferrate on reduced graphene oxide and its application as a salicylic acid sensor. J Mater Chem B 2(43):7515–7523. doi:10.1039/c4tb01325e

    Article  CAS  Google Scholar 

  117. Wang Q, Tang Q (2015) Improved sensing of dopamine and ascorbic acid using a glassy carbon electrode modified with electrochemically synthesized nickel-cobalt hexacyanoferrate microparticles deposited on graphene. Microchim Acta 182:671–677. doi:10.1007/s00604-014-1371-x

    Article  CAS  Google Scholar 

  118. Ding S-N, Zheng C-L, Wan N, Cosnier S (2014) Graphene/clay composite electrode formed by exfoliating graphite with Laponite for simultaneous determination of ascorbic acid, dopamine, and uric acid. Monatsh Chem 145(9):1389–1394. doi:10.1007/s00706-014-1225-6

    Article  CAS  Google Scholar 

  119. Prashanth SN, Teradal NL, Seetharamappa J, Satpati AK, Reddy AVR (2014) Fabrification of electroreduced graphene oxide–bentonite sodium composite modified electrode and its sensing application for linezolid. Electrochim Acta 133:49–56. doi:10.1016/j.electacta.2014.04.022

    Article  CAS  Google Scholar 

  120. Zhang S, Zhang G, He P, Lei W, Dong F, Yang D, Suo Z (2015) Novel one-pot hydrothermal fabrication of cuprous oxide-attapulgite/graphene for non-enzyme glucose sensing. Anal Methods 7(6):2747–2753. doi:10.1039/c4ay03001j

    Article  CAS  Google Scholar 

  121. Bharath G, Madhu R, Chen S-M, Veeramani V, Balamurugan A, Mangalaraj D, Viswanathan C, Ponpandian N (2015) Enzymatic electrochemical glucose biosensors by mesoporous 1D hydroxyapatite-on-2D reduced graphene oxide. J Mater Chem B 3(7):1360–1370. doi:10.1039/c4tb01651c

    Article  CAS  Google Scholar 

  122. Lian Q, He Z, He Q, Luo A, Yan K, Zhang D, Lu X, Zhou X (2014) Simultaneous determination of ascorbic acid, dopamine and uric acid based on tryptophan functionalized graphene. Anal Chim Acta 823:32–39. doi:10.1016/j.aca.2014.03.032

    Article  CAS  Google Scholar 

  123. Qiao W, Wang L, Ye B, Li G, Li J (2015) Electrochemical behavior of palmatine and its sensitive determination based on an electrochemically reduced L-methionine functionalized graphene oxide modified electrode. Analyst 140(23):7974–7983. doi:10.1039/c5an01770j

    Article  CAS  Google Scholar 

  124. Vilian ATE, Veeramani V, Chen S-M, Madhu R, Huh YS, Han Y-K (2015) Preparation of a reduced graphene oxide/poly-l-glutathione nanocomposite for electrochemical detection of 4-aminophenol in orange juice samples. Anal Methods 7(13):5627–5634. doi:10.1039/c5ay01005e

    Article  CAS  Google Scholar 

  125. Li L, Li L, Wang C, Liu K, Zhu R, Qiang H, Lin Y (2015) Synthesis of nitrogen-doped and amino acid-functionalized graphene quantum dots from glycine, and their application to the fluorometric determination of ferric ion. Microchim Acta 182:763–770. doi:10.1007/s00604-014-1383-6

    Article  CAS  Google Scholar 

  126. Wu K, Fei J, Hu S (2003) Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes. Anal Biochem 318(1):100–106. doi:10.1016/s0003-2697(03)00174-x

    Article  CAS  Google Scholar 

  127. Meng X, Xu Z, Wang M, Yin H, Ai S (2013) Direct determination of 5-methylcytosine based on electrochemical activation of surfactant functionalized graphene modified pyrolytic graphite electrode. Electrochim Acta 95:200–204. doi:10.1016/j.electacta.2013.02.050

    Article  CAS  Google Scholar 

  128. Mao Y, Fan Q, Li J, Yu L, L-b Q (2014) A novel and green CTAB-functionalized graphene nanosheets electrochemical sensor for Sudan I determination. Sensors Actuators B Chem 203:759–765. doi:10.1016/j.snb.2014.07.024

    Article  CAS  Google Scholar 

  129. Song C, Wu D, Zhang F, Liu P, Lu Q, Feng X (2012) Gemini surfactant assisted synthesis of two-dimensional metal nanoparticles/graphene composites. Chem Commun (Camb) 48(15):2119–2121. doi:10.1039/c2cc16890a

    Article  CAS  Google Scholar 

  130. Ji J, Li Y, Peng W, Zhang G, Zhang F, Fan X (2015) Advanced Graphene-Based Binder-Free Electrodes for High-Performance Energy Storage. Adv Mater 27(36):5264–5279. doi:10.1002/adma.201501115

    Article  CAS  Google Scholar 

  131. Yasri NG, Sundramoorthy AK, Gunasekaran S (2015) Azo dye functionalized graphene nanoplatelets for selective detection of bisphenol A and hydrogen peroxide. RSC Adv 5(106):87295–87305. doi:10.1039/c5ra16530j

    Article  CAS  Google Scholar 

  132. Chen G, Shi H, Ban F, Zhang Y, Sun L (2015) Determination of trypsin activity using a gold electrode modified with a nanocover composed of graphene oxide and thionine. Microchim Acta 182:2469–2476. doi:10.1007/s00604-015-1601-x

    Article  CAS  Google Scholar 

  133. Li R, Wang J, Liu L, Li Z (2016) Ultrasensitive direct detection of dsDNA using a glassy carbon electrode modified with thionin-functionalized multiple graphene aerogel and gold nanostars. Microchim Acta 183:1641–1649. doi:10.1007/s00604-016-1793-8

    Article  CAS  Google Scholar 

  134. Liu S, Wei M, Zheng X, Xu S, Zhou C (2014) Highly sensitive and selective sensing platform based on pi-pi interaction between tricyclic aromatic hydrocarbons with thionine-graphene composite. Anal Chim Acta 826:21–27. doi:10.1016/j.aca.2014.04.010

    Article  CAS  Google Scholar 

  135. Wang Y, Wu T, C-y B (2016) Simultaneous determination of acetaminophen, theophylline and caffeine using a glassy carbon disk electrode modified with a composite consisting of poly(Alizarin Violet 3B), multiwalled carbon nanotubes and graphene. Microchim Acta 183:731–739. doi:10.1007/s00604-015-1688-0

    Article  CAS  Google Scholar 

  136. Wang F, Gong W, Wang L, Chen Z (2015) Enhanced amperometric response of a glucose oxidase and horseradish peroxidase based bienzyme glucose biosensor modified with a film of polymerized toluidine blue containing reduced graphene oxide. Microchim Acta 182:1949–1956. doi:10.1007/s00604-015-1535-3

    Article  CAS  Google Scholar 

  137. Gan T, Hu C, Chen Z, Hu S (2011) A disposable electrochemical sensor for the determination of indole-3-acetic acid based on poly(safranine T)-reduced graphene oxide nanocomposite. Talanta 85(1):310–316. doi:10.1016/j.talanta.2011.03.070

    Article  CAS  Google Scholar 

  138. Mahyari M (2016) Electrochemical sensing of thiodiglycol, the main hydrolysis product of sulfur mustard, by using an electrode composed of an ionic liquid, graphene nanosheets and silver nanoparticles. Microchim Acta 183:2395–2401. doi:10.1007/s00604-016-1881-9

  139. Jing P, Zhang X, Wu Z, Bao L, Xu Y, Liang C, Cao W (2015) Electrochemical sensing of bisphenol A by graphene-1-butyl-3-methylimidazolium hexafluorophosphate modified electrode. Talanta 141:41–46. doi:10.1016/j.talanta.2015.03.042

    Article  CAS  Google Scholar 

  140. Wang C, Chen Y, Zhuo K, Wang J (2013) Simultaneous reduction and surface functionalization of graphene oxide via an ionic liquid for electrochemical sensors. Chem Commun (Camb) 49(32):3336–3338. doi:10.1039/c3cc40507a

    Article  CAS  Google Scholar 

  141. Valentini F, Roscioli D, Carbone M, Conte V, Floris B, Bauer EM, Ditaranto N, Sabbatini L, Caponetti E, Chillura-Martino D (2015) Graphene and ionic liquids new gel paste electrodes for caffeic acid quantification. Sensors Actuators B Chem 212:248–255. doi:10.1016/j.snb.2015.02.033

    Article  CAS  Google Scholar 

  142. Li J, Li Q, Zeng Y, Tang T, Pan Y, Li L (2015) An electrochemical sensor for the sensitive determination of phenylethanolamine A based on a novel composite of reduced graphene oxide and poly(ionic liquid). RSC Adv 5(1):717–725. doi:10.1039/c4ra11698d

    Article  CAS  Google Scholar 

  143. Huang S, Lu S, Huang C, Sheng J, Su W, Zhang L, Xiao Q (2015) Sensitive and selective stripping voltammetric determination of copper(II) using a glassy carbon electrode modified with amino-reduced graphene oxide and β-cyclodextrin. Microchim Acta 182(15–16):2529–2539. doi:10.1007/s00604-015-1627-0

    Article  CAS  Google Scholar 

  144. Palanisamy S, Wang Y-T, Chen S-M, Thirumalraj B, Lou B-S (2016) Direct electrochemistry of immobilized hemoglobin and sensing of bromate at a glassy carbon electrode modified with graphene and β-cyclodextrin. Microchim Acta 183:1953–1961. doi:10.1007/s00604-016-1811-x

    Article  CAS  Google Scholar 

  145. Liu Z, Zhang A, Guo Y, Dong C (2014) Electrochemical sensor for ultrasensitive determination of isoquercitrin and baicalin based on DM-beta-cyclodextrin functionalized graphene nanosheets. Biosens Bioelectron 58:242–248. doi:10.1016/j.bios.2014.02.051

    Article  CAS  Google Scholar 

  146. Zhu G, Zhang X, Gai P, Chen J (2012) Enhanced Electrochemical Sensing for Persistent Organic Pollutants by Nanohybrids of Graphene Nanosheets that are Noncovalently Functionalized with Cyclodextrin. ChemPlusChem 77(9):844–849. doi:10.1002/cplu.201200144

    Article  CAS  Google Scholar 

  147. Muñoz J, Riba-Moliner M, Brennan LJ, Gun’ko YK, Céspedes F, González-Campo A, Baeza M (2016) Amperometric thyroxine sensor using a nanocomposite based on graphene modified with gold nanoparticles carrying a thiolated β-cyclodextrin. Microchim Acta 183:1579–1589. doi:10.1007/s00604-016-1783-x

    Article  CAS  Google Scholar 

  148. Zhang Z, Gu S, Ding Y, Shen M, Jiang L (2014) Mild and novel electrochemical preparation of beta-cyclodextrin/graphene nanocomposite film for super-sensitive sensing of quercetin. Biosens Bioelectron 57:239–244. doi:10.1016/j.bios.2014.02.014

    Article  CAS  Google Scholar 

  149. Olsen G, Ulstrup J, Chi Q (2016) Crown-Ether Derived Graphene Hybrid Composite for Membrane-Free Potentiometric Sensing of Alkali Metal Ions. ACS Appl Mater Interfaces 8(1):37–41. doi:10.1021/acsami.5b11597

    Article  CAS  Google Scholar 

  150. Yang L, Zhao H, Li Y, Ran X, Deng G, Zhang Y, Ye H, Zhao G, Li CP (2016) Indicator displacement assay for cholesterol electrochemical sensing using a calix[6] arene functionalized graphene-modified electrode. Analyst 141(1):270–278. doi:10.1039/c5an01843a

    Article  CAS  Google Scholar 

  151. Buaki-Sogo M, del Pozo M, Hernandez P, Garcia H, Quintana C (2012) Graphene in combination with cucurbit [n] urils as electrode modifiers for electroanalytical biomolecules sensing. Talanta 101:135–140. doi:10.1016/j.talanta.2012.09.016

    Article  CAS  Google Scholar 

  152. Wang Q, Lei J, Deng S, Zhang L, Ju H (2013) Graphene-supported ferric porphyrin as a peroxidase mimic for electrochemical DNA biosensing. Chem Commun (Camb) 49(9):916–918. doi:10.1039/c2cc37664d

    Article  CAS  Google Scholar 

  153. Silva S, Aguiar LF, Carvalho RMS, Tanaka AA, Damos FS, Luz RCS (2016) A glassy carbon electrode modified with an iron N4-macrocycle and reduced graphene oxide for voltammetric sensing of dissolved oxygen. Microchim Acta 183:1251–1259. doi:10.1007/s00604-016-1750-6

    Article  CAS  Google Scholar 

  154. Wang H, Bu Y, Dai W, Li K, Wang H, Zuo X (2015) Well-dispersed cobalt phthalocyanine nanorods on graphene for the electrochemical detection of hydrogen peroxide and glucose sensing. Sensors Actuators B Chem 216:298–306. doi:10.1016/j.snb.2015.04.044

    Article  CAS  Google Scholar 

  155. Fan L, Zhang Q, Wang K, Li F, Niu L (2012) Ferrocene functionalized graphene: preparation, characterization and efficient electron transfer toward sensors of H2O2. J Mater Chem 22(13):6165–6170. doi:10.1039/c2jm15411k

    Article  CAS  Google Scholar 

  156. Hua Z, Qin Q, Bai X, Huang X, Zhang Q (2016) An electrochemical biosensing platform based on 1-formylpyrene functionalized reduced graphene oxide for sensitive determination of phenol. RSC Adv 6(30):25427–25434. doi:10.1039/c5ra27563f

    Article  CAS  Google Scholar 

  157. Yu C, Guo Y, Liu H, Yan N, Xu Z, Yu G, Fang Y, Liu Y (2013) Ultrasensitive and selective sensing of heavy metal ions with modified graphene. Chem Commun (Camb) 49(58):6492–6494. doi:10.1039/c3cc42377h

    Article  CAS  Google Scholar 

  158. Wang Q, Kaminska I, Niedziolka-Jonsson J, Opallo M, Li M, Boukherroub R, Szunerits S (2013) Sensitive sugar detection using 4-aminophenylboronic acid modified graphene. Biosens Bioelectron 50:331–337. doi:10.1016/j.bios.2013.06.015

    Article  CAS  Google Scholar 

  159. Veerapandian M, Levaray N, Lee MH, Giasson S, Zhu XX (2015) Glucosamine-Anchored Graphene Oxide Nanosheets: Fabrication, Ultraviolet Irradiation, and Electrochemical Properties. ACS Appl Mater Interfaces 7(27):14552–14556. doi:10.1021/acsami.5b00608

    Article  CAS  Google Scholar 

  160. Araque E, Villalonga R, Gamella M, Martínez-Ruiz P, Reviejo J, Pingarrón JM (2013) Crumpled reduced graphene oxide–polyamidoamine dendrimer hybrid nanoparticles for the preparation of an electrochemical biosensor. J Mater Chem B 1(17):2289–2296. doi:10.1039/c3tb20078g

    Article  CAS  Google Scholar 

  161. Han D, Han T, Shan C, Ivaska A, Niu L (2010) Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid with Chitosan-Graphene Modified Electrode. Electroanalysis 22(17–18):2001–2008. doi:10.1002/elan.201000094

    Article  CAS  Google Scholar 

  162. Liu L, Jiang S, Wang L, Zhang Z, Xie G (2015) Direct detection of microRNA-126 at a femtomolar level using a glassy carbon electrodemodified with chitosan, graphene sheets,and a poly(amidoamine) endrimer composite with gold and silver nanoclusters. Microchim Acta 182:77–84. doi:10.1007/s00604-014-1273-y

  163. Rabti A, Argoubi W, Raouafi N (2016) Enzymatic sensing of glucose in artificial saliva using a flat electrode consisting of a nanocomposite prepared from reduced graphene oxide, chitosan, nafion and glucose oxidase. Microchim Acta 183:1227–1233. doi:10.1007/s00604-016-1753-3

    Article  CAS  Google Scholar 

  164. Istrate O-M, Rotariu L, Bala C (2016) Electrochemical determination of NADH using screen printed carbon electrodes modified with reduced graphene oxide and poly(allylamine hydrochloride). Microchim Acta 183:57–65. doi:10.1007/s00604-015-1595-4

    Article  CAS  Google Scholar 

  165. Xu F, Deng M, Liu Y, Ling X, Deng X, Wang L (2014) Facile preparation of poly(diallyldimethylammonium chloride) modified reduced graphene oxide for sensitive detection of nitrite. Electrochem Commun 47:33–36. doi:10.1016/j.elecom.2014.07.016

    Article  CAS  Google Scholar 

  166. Navaee A, Salimi A, Teymourian H (2012) Graphene nanosheets modified glassy carbon electrode for simultaneous detection of heroine, morphine and noscapine. Biosens Bioelectron 31(1):205–211. doi:10.1016/j.bios.2011.10.018

    Article  CAS  Google Scholar 

  167. Wang F, Zhou J, Liu Y, Wu S, Song G, Ye B (2011) Electrochemical oxidation behavior of colchicine on a graphene oxide-Nafion composite film modified glassy carbon electrode. Analyst 136(19):3943–3949. doi:10.1039/c1an15372b

    Article  CAS  Google Scholar 

  168. Wang Y, Song B, Xu J, Hu S (2014) An amperometric sensor for nitric oxide based on a glassy carbon electrode modified with graphene, Nafion, and electrodeposited gold nanoparticles. Microchim Acta 182(3–4):711–718. doi:10.1007/s00604-014-1379-2

    Google Scholar 

  169. Sharma V, Hynek D, Trnkova L, Hemzal D, Marik M, Kizek R, Hubalek J (2016) Electrochemical determination of adenine using a glassy carbon electrode modified with graphene oxide and polyaniline. Microchim Acta 183:1299–1306. doi:10.1007/s00604-015-1740-0

    Article  CAS  Google Scholar 

  170. Gao YS, Xu JK, Lu LM, Wu LP, Zhang KX, Nie T, Zhu XF, Wu Y (2014) Overoxidized polypyrrole/graphene nanocomposite with good electrochemical performance as novel electrode material for the detection of adenine and guanine. Biosens Bioelectron 62:261–267. doi:10.1016/j.bios.2014.06.044

    Article  CAS  Google Scholar 

  171. Wang Q, Yun Y (2012) A nanomaterial composed of cobalt nanoparticles, poly(3,4-ethylenedioxythiophene) and graphene with high electrocatalytic activity for nitrite oxidation. Microchim Acta 177:411–418. doi:10.1007/s00604-012-0794-5

    Article  CAS  Google Scholar 

  172. Weaver CL, Li H, Luo X, Cui XT (2014) A graphene oxide/conducting polymer nanocomposite for electrochemical dopamine detection: origin of improved sensitivity and specificity. J Mater Chem B 2(32):5209. doi:10.1039/c4tb00789a

    Article  CAS  Google Scholar 

  173. Wang W, Wang W, Davis J, Luo X (2015) Ultrasensitive and selective voltammetric aptasensor for dopamine based on a conducting polymer nanocomposite doped with graphene oxide. Microchim Acta 182:1123–1129. doi:10.1007/s00604-014-1418-z

    Article  CAS  Google Scholar 

  174. Wang Z, Wang H, Zhang Z, Yang X, Liu G (2014) Sensitive electrochemical determination of trace cadmium on a stannum film/poly(p-aminobenzene sulfonic acid)/electrochemically reduced graphene composite modified electrode. Electrochim Acta 120:140–146. doi:10.1016/j.electacta.2013.12.068

    Article  CAS  Google Scholar 

  175. Yang T, Kong Q, Li Q, Wang X, Chen L, Jiao K (2014) Highly sensitive and synergistic detection of guanine and adenine based on poly(xanthurenic acid)-reduced graphene oxide interface. ACS Appl Mater Interfaces 6(14):11032–11037. doi:10.1021/am502598k

    Article  CAS  Google Scholar 

  176. Zhang W (2015) Electrochemically reduced graphene oxide supported poly (indole-5-carboxylic acid) nanocomposite for genosensing application. RSC Adv 5(125):103649–103655. doi:10.1039/c5ra21071b

    Article  CAS  Google Scholar 

  177. Li C, Liu W, Gu Y, Hao S, Yan X, Zhang Z, Yang M (2014) Simultaneous determination of catechol and hydroquinone based on poly(sulfosalicylic acid)/functionalized graphene modified electrode. J Appl Electrochem 44(9):1059–1067. doi:10.1007/s10800-014-0713-z

    Article  CAS  Google Scholar 

  178. Li C, Qiu X, Ling Y (2013) Electrocatalytic oxidation and the simultaneous determination of guanine and adenine on (2,6-pyridinedicarboxylic acid)/graphene composite film modified electrode. J Electroanal Chem 704:44–49. doi:10.1016/j.jelechem.2013.06.010

    Article  CAS  Google Scholar 

  179. Lei W, Wu Q, Si W, Gu Z, Zhang Y, Deng J, Hao Q (2013) Electrochemical determination of imidacloprid using poly(carbazole)/chemically reduced graphene oxide modified glassy carbon electrode. Sensors Actuators B Chem 183:102–109. doi:10.1016/j.snb.2013.03.118

    Article  CAS  Google Scholar 

  180. Liu X, Zhang L, Wei S, Chen S, Ou X, Lu Q (2014) Overoxidized polyimidazole/graphene oxide copolymer modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid, guanine and adenine. Biosens Bioelectron 57:232–238. doi:10.1016/j.bios.2014.02.017

    Article  CAS  Google Scholar 

  181. Peng J, Feng Y, Han X-X, Gao Z-N (2016) Simultaneous determination of bisphenol A and hydroquinone using a poly(melamine) coated graphene doped carbon paste electrode. Microchim Acta 183:2289–2296. doi:10.1007/s00604-016-1865-9

    Article  CAS  Google Scholar 

  182. Wang Z, Xia J, Zhu L, Chen X, Zhang F, Yao S, Li Y, Xia Y (2011) A Selective Voltammetric Method for Detecting Dopamine at Quercetin Modified Electrode Incorporating Graphene. Electroanalysis 23(10):2463–2471. doi:10.1002/elan.201100256

    Article  CAS  Google Scholar 

  183. Wu L, Lei W, Han Z, Zhang Y, Xia M, Hao Q (2015) A novel non-enzyme amperometric platform based on poly(3-methylthiophene)/nitrogen doped graphene modified electrode for determination of trace amounts of pesticide phoxim. Sensors Actuators B Chem 206:495–501. doi:10.1016/j.snb.2014.09.098

    Article  CAS  Google Scholar 

  184. Liu J, Liu Z, Barrow CJ, Yang W (2015) Molecularly engineered graphene surfaces for sensing applications: A review. Anal Chim Acta 859:1–19. doi:10.1016/j.aca.2014.07.031

    Article  CAS  Google Scholar 

  185. Deng P, Xu Z, Kuang Y (2014) Electrochemical determination of bisphenol A in plastic bottled drinking water and canned beverages using a molecularly imprinted chitosan-graphene composite film modified electrode. Food Chem 157:490–497. doi:10.1016/j.foodchem.2014.02.074

    Article  CAS  Google Scholar 

  186. Chen N, Chen L, Cheng Y, Zhao K, Wu X, Xian Y (2015) Molecularly imprinted polymer grafted graphene for simultaneous electrochemical sensing of 4, 4-methylene diphenylamine and aniline by differential pulse voltammetry. Talanta 132:155–161. doi:10.1016/j.talanta.2014.09.008

    Article  CAS  Google Scholar 

  187. Dadkhah S, Ziaei E, Mehdinia A, Kayyal TB, Jabbari A (2016) A glassy carbon electrode modified with amino-functionalized graphene oxide and molecularly imprinted polymer for electrochemical sensing of bisphenol A. Microchim Acta 183:1933–1941. doi:10.1007/s00604-016-1824-5

    Article  CAS  Google Scholar 

  188. Luo J, Jiang S, Liu X (2014) Electrochemical sensor for bovine hemoglobin based on a novel graphene-molecular imprinted polymers composite as recognition element. Sensors Actuators B Chem 203:782–789. doi:10.1016/j.snb.2014.07.061

    Article  CAS  Google Scholar 

  189. da Silva H, Pacheco JG, Magalhaes JM, Viswanathan S, Delerue-Matos C (2014) MIP-graphene-modified glassy carbon electrode for the determination of trimethoprim. Biosens Bioelectron 52:56–61. doi:10.1016/j.bios.2013.08.035

    Article  CAS  Google Scholar 

  190. Li D, Liu J, Barrow CJ, Yang W (2014) Protein electrochemistry using graphene-based nano-assembly: an ultrasensitive electrochemical detection of protein molecules via nanoparticle-electrode collisions. Chem Commun (Camb) 50(60):8197–8200. doi:10.1039/c4cc03384a

    Article  CAS  Google Scholar 

  191. Araque E, Villalonga R, Gamella M, Martínez-Ruiz P, Sánchez A, García-Baonza V, Pingarrón JM (2014) Water-Soluble Reduced Graphene Oxide-Carboxymethylcellulose Hybrid Nanomaterial for Electrochemical Biosensor Design. ChemPlusChem 79(9):1334–1341. doi:10.1002/cplu.201402017

    Article  CAS  Google Scholar 

  192. Gao L, Lian C, Zhou Y, Yan L, Li Q, Zhang C, Chen L, Chen K (2014) Graphene oxide-DNA based sensors. Biosens Bioelectron 60:22–29. doi:10.1016/j.bios.2014.03.039

    Article  CAS  Google Scholar 

  193. Green NS, Norton ML (2015) Interactions of DNA with graphene and sensing applications of graphene field-effect transistor devices: a review. Anal Chim Acta 853:127–142. doi:10.1016/j.aca.2014.10.023

    Article  CAS  Google Scholar 

  194. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. doi:10.1038/nmat1849

    Article  CAS  Google Scholar 

  195. Wang L, Qin X, Liu S, Luo Y, Asiri AM, Al-Youbi AO, Sun X (2012) Single-Stranded DNA-Mediated Immobilization of Graphene on a Gold Electrode for Sensitive and Selective Determination of Dopamine. ChemPlusChem 77(1):19–22. doi:10.1002/cplu.201100009

    Article  CAS  Google Scholar 

  196. Ferreira GMM, de Oliveira FM, Leite FRF, Maroneze CM, Kubota LT, Damos FS, Luz RCS (2013) DNA and graphene as a new efficient platform for entrapment of methylene blue (MB): Studies of the electrocatalytic oxidation of β-nicotinamide adenine dinucleotide. Electrochim Acta 111:543–551. doi:10.1016/j.electacta.2013.08.037

    Article  CAS  Google Scholar 

  197. Wang M, Zhang S, Ye Z, Peng D, He L, Yan F, Yang Y, Zhang H, Zhang Z (2015) A gold electrode modified with amino-modified reduced graphene oxide, ion specific DNA and DNAzyme for dual electrochemical determination of Pb (II) and Hg (II). Microchim Acta 182:2251–2258. doi:10.1007/s00604-015-1569-6

    Article  CAS  Google Scholar 

  198. Gao L, Xiao Y, Wang Y, Chen X, Zhou B, Yang X (2015) A carboxylated graphene and aptamer nanocomposite-based aptasensor for sensitive and specific detection of hemin. Talanta 132:215–221. doi:10.1016/j.talanta.2014.09.010

    Article  CAS  Google Scholar 

  199. Erdem A, Eksin E, Muti M (2014) Chitosan-graphene oxide based aptasensor for the impedimetric detection of lysozyme. Colloids Surf, B 115:205–211. doi:10.1016/j.colsurfb.2013.11.037

    Article  CAS  Google Scholar 

  200. Yan C, Cho JH, Ahn JH (2012) Graphene-based flexible and stretchable thin film transistors. Nanoscale 4(16):4870–4882. doi:10.1039/c2nr30994g

    Article  CAS  Google Scholar 

  201. Jang H, Park YJ, Chen X, Das T, Kim MS, Ahn JH (2016) Graphene-Based Flexible and Stretchable Electronics. Adv Mater. doi:10.1002/adma.201504245

    Google Scholar 

  202. Li J, Li J, Li L, Yu M, Ma H, Zhang B (2014) Flexible graphene fibers prepared by chemical reduction-induced self-assembly. J Mater Chem A 2(18):6359. doi:10.1039/c4ta00431k

    Article  CAS  Google Scholar 

  203. Xiao F, Li Y, Zan X, Liao K, Xu R, Duan H (2012) Growth of Metal-Metal Oxide Nanostructures on Freestanding Graphene Paper for Flexible Biosensors. Adv Funct Mater 22(12):2487–2494. doi:10.1002/adfm.201200191

    Article  CAS  Google Scholar 

  204. Zhang M, Halder A, Hou C, Ulstrup J, Chi Q (2016) Free-standing and flexible graphene papers as disposable non-enzymatic electrochemical sensors. Bioelectrochemistry 109:87–94. doi:10.1016/j.bioelechem.2016.02.002

    Article  CAS  Google Scholar 

  205. Ghosh R, Singh A, Santra S, Ray SK, Chandra A, Guha PK (2014) Highly sensitive large-area multi-layered graphene-based flexible ammonia sensor. Sensors Actuators B Chem 205:67–73. doi:10.1016/j.snb.2014.08.044

    Article  CAS  Google Scholar 

  206. Gao H, Duan H (2014) 2D and 3D graphene materials: Preparation and bioelectrochemical applications. Biosens Bioelectron 65C:404–419. doi:10.1016/j.bios.2014.10.067

    Google Scholar 

  207. Shen Y, Fang Q, Chen B (2015) Environmental applications of three-dimensional graphene-based macrostructures: adsorption, transformation, and detection. Environ Sci Technol 49(1):67–84. doi:10.1021/es504421y

    Article  CAS  Google Scholar 

  208. Cao X, Zeng Z, Shi W, Yep P, Yan Q, Zhang H (2013) Three-dimensional graphene network composites for detection of hydrogen peroxide. Small 9(9–10):1703–1707. doi:10.1002/smll.201200683

    Article  CAS  Google Scholar 

  209. Kung CC, Lin PY, Buse FJ, Xue Y, Yu X, Dai L, Liu CC (2014) Preparation and characterization of three dimensional graphene foam supported platinum-ruthenium bimetallic nanocatalysts for hydrogen peroxide based electrochemical biosensors. Biosens Bioelectron 52:1–7. doi:10.1016/j.bios.2013.08.025

    Article  CAS  Google Scholar 

  210. Penmatsa V, Kim T, Beidaghi M, Kawarada H, Gu L, Wang Z, Wang C (2012) Three-dimensional graphene nanosheet encrusted carbon micropillar arrays for electrochemical sensing. Nanoscale 4(12):3673–3678. doi:10.1039/c2nr30161j

    Article  CAS  Google Scholar 

  211. Yu B, Kuang D, Liu S, Liu C, Zhang T (2014) Template-assisted self-assembly method to prepare three-dimensional reduced graphene oxide for dopamine sensing. Sensors Actuators B Chem 205:120–126. doi:10.1016/j.snb.2014.08.038

    Article  CAS  Google Scholar 

  212. Zhao Y, Bo X, Guo L (2015) Highly exposed copper oxide supported on three-dimensional porous reduced graphene oxide for non-enzymatic detection of glucose. Electrochim Acta 176:1272–1279. doi:10.1016/j.electacta.2015.07.143

    Article  CAS  Google Scholar 

  213. Yong YC, Yu YY, Zhang X, Song H (2014) Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm. Angew Chem Int Ed Engl 53(17):4480–4483. doi:10.1002/anie.201400463

    Article  CAS  Google Scholar 

  214. Zhu L, Xu L, Huang B, Jia N, Tan L, Yao S (2014) Simultaneous determination of Cd (II) and Pb (II) using square wave anodic stripping voltammetry at a gold nanoparticle-graphene-cysteine composite modified bismuth film electrode. Electrochim Acta 115:471–477. doi:10.1016/j.electacta.2013.10.209

    Article  CAS  Google Scholar 

  215. Liu X, Li Z, Ding R, Ren B, Li Y (2016) A nanocarbon paste electrode modified with nitrogen-doped graphene for square wave anodic stripping voltammetric determination of trace lead and cadmium. Microchim Acta 183:709–714. doi:10.1007/s00604-015-1713-3

    Article  CAS  Google Scholar 

  216. Zhang Y, Qi M, Liu G (2015) C—C Bonding of Graphene Oxide on 4-Aminophenyl Modified Gold Electrodes towards Simultaneous Detection of Heavy Metal Ions. Electroanalysis 27(5):1110–1118. doi:10.1002/elan.201400591

    Article  CAS  Google Scholar 

  217. Silwana B, Cvd H, Iwuoha E, Somerset V (2016) Reduced Graphene Oxide Impregnated Antimony Nanoparticle Sensor for Electroanalysis of Platinum Group Metals. Electroanalysis 28:1597–1607. doi:10.1002/elan.201501071

    Article  CAS  Google Scholar 

  218. Zhao Q, Chai Y, Yuan R, Luo J (2013) Square wave anodic stripping voltammetry determination of lead based on the Hg (II) immobilized graphene oxide composite film as an enhanced sensing platform. Sensors Actuators B Chem 178:379–384. doi:10.1016/j.snb.2012.12.114

    Article  CAS  Google Scholar 

  219. Zhan F, Gao F, Wang X, Xie L, Gao F, Wang Q (2016) Determination of lead (II) by adsorptive stripping voltammetry using a glassy carbon electrode modified with β-cyclodextrin and chemically reduced graphene oxide composite. Microchim Acta 183(3):1169–1176. doi:10.1007/s00604-016-1754-2

    Article  CAS  Google Scholar 

  220. Zhang W, Wei J, Zhu H, Zhang K, Ma F, Mei Q, Zhang Z, Wang S (2012) Self-assembled multilayer of alkyl graphene oxide for highly selective detection of copper (ii) based on anodic stripping voltammetry. J Mater Chem 22(42):22631–22636. doi:10.1039/c2jm34795d

    Article  CAS  Google Scholar 

  221. Ding L, Liu Y, Zhai J, Bond AM, Zhang J (2014) Direct Electrodeposition of Graphene-Gold Nanocomposite Films for Ultrasensitive Voltammetric Determination of Mercury (II). Electroanalysis 26(1):121–128. doi:10.1002/elan.201300226

    Article  CAS  Google Scholar 

  222. Lin M, Han H, Pan D, Zhang H, Su Z (2014) Voltammetric determination of total dissolved iron in coastal waters using a glassy carbon electrode modified with reduced graphene oxide, Methylene Blue and gold nanoparticles. Microchim Acta 182(3–4):805–813. doi:10.1007/s00604-014-1391-6

    Article  CAS  Google Scholar 

  223. Kumar S, Bhanjana G, Dilbaghi N, Kumar R, Umar A (2016) Fabrication and characterization of highly sensitive and selective arsenic sensor based on ultra-thin graphene oxide nanosheets. Sensors Actuators B Chem 227:29–34. doi:10.1016/j.snb.2015.11.101

    Article  CAS  Google Scholar 

  224. Sanghavi BJ, Gadhari NS, Kalambate PK, Karna SP, Srivastava AK (2015) Potentiometric stripping analysis of arsenic using a graphene paste electrode modified with a thiacrown ether and gold nanoparticles. Microchim Acta 182(7–8):1473–1481. doi:10.1007/s00604-015-1470-3

    Article  CAS  Google Scholar 

  225. Qi P, Wan Y, Zhang D, Wu J (2011) Reduced Graphene Sheets Modified Electrodes for Electrochemical Detection of Sulfide. Electroanalysis 23(12):2796–2801. doi:10.1002/elan.201100293

    Article  CAS  Google Scholar 

  226. Zhang W, Zheng J, Shi J, Lin Z, Huang Q, Zhang H, Wei C, Chen J, Hu S, Hao A (2015) Nafion covered core-shell structured Fe3O4@graphene nanospheres modified electrode for highly selective detection of dopamine. Anal Chim Acta 853:285–290. doi:10.1016/j.aca.2014.10.032

    Article  CAS  Google Scholar 

  227. Liu B, Luo L, Ding Y, Si X, Wei Y, Ouyang X, Xu D (2014) Differential pulse voltammetric determination of ascorbic acid in the presence of folic acid at electro-deposited NiO/graphene composite film modified electrode. Electrochim Acta 142:336–342. doi:10.1016/j.electacta.2014.07.126

    Article  CAS  Google Scholar 

  228. Rosy R, Singh F, Goyal RN (2015) Structural and electrochemical characterization of carbon ion beam irradiated reduced graphene oxide and its application in voltammetric determination of norepinephrine. RSC Adv 5(106):87504–87511. doi:10.1039/c5ra17909b

    Article  CAS  Google Scholar 

  229. Jain R, Dhanjai SA (2016) Graphene-zinc oxide nanorods nanocomposite based sensor for voltammetric quantification of tizanidine in solubilized system. Appl Surf Sci 369:151–158. doi:10.1016/j.apsusc.2016.02.077

    Article  CAS  Google Scholar 

  230. Wang F, Wu Y, Lu K, Gao L, Ye B (2014) A simple, rapid and green method based on pulsed potentiostatic electrodeposition of reduced graphene oxide on glass carbon electrode for sensitive voltammetric detection of sophoridine. Electrochim Acta 141:82–88. doi:10.1016/j.electacta.2014.07.018

    Article  CAS  Google Scholar 

  231. Zhao L, Li H, Gao S, Li M, Xu S, Li C, Guo W, Qu C, Yang B (2015) MgO nanobelt-modified graphene-tantalum wire electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid. Electrochim Acta 168:191–198. doi:10.1016/j.electacta.2015.03.215

    Article  CAS  Google Scholar 

  232. Gan T, Hu C, Hu S (2014) Preparation of graphene oxide–fullerene/phosphotungstic acid films and their application as sensor for the determination of cis-jasmone. Anal Methods 6(23):9220–9227. doi:10.1039/c4ay01861c

    Article  CAS  Google Scholar 

  233. Er E, Çelikkan H, Erk N (2016) Highly sensitive and selective electrochemical sensor based on high-quality graphene/nafion nanocomposite for voltammetric determination of nebivolol. Sensors Actuators B Chem 224:170–177. doi:10.1016/j.snb.2015.10.028

    Article  CAS  Google Scholar 

  234. Yola ML, Atar N, Üstündağ Z, Solak AO (2013) A novel voltammetric sensor based on p-aminothiophenol functionalized graphene oxide/gold nanoparticles for determining quercetin in the presence of ascorbic acid. J Electroanal Chem 698:9–16. doi:10.1016/j.jelechem.2013.03.016

    Article  CAS  Google Scholar 

  235. Wu F, Huang T, Hu Y, Yang X, Ouyang Y, Xie Q (2016) Differential pulse voltammetric simultaneous determination of ascorbic acid, dopamine and uric acid on a glassy carbon electrode modified with electroreduced graphene oxide and imidazolium groups. Microchim Acta 183:2539–2546. doi:10.1007/s00604-016-1895-3

    Article  CAS  Google Scholar 

  236. Wang L, Yang R, Wang H, Li J, Qu L, Harrington Pde B (2015) High-selective and sensitive voltammetric sensor for butylated hydroxyanisole based on AuNPs-PVP-graphene nanocomposites. Talanta 138:169–175. doi:10.1016/j.talanta.2015.01.016

    Article  CAS  Google Scholar 

  237. Jing Y, Lin E, Su X, Liu Y, Li H, Yuan X, Ping L, Fan Y (2016) Electrodeposition of Au nanoparticles on poly(diallyldimethylammonium chloride) functionalized reduced graphene oxide sheets for voltammetric determination of nicotine in tobacco products and anti-smoking pharmaceuticals. RSC Adv 6(31):26247–26253. doi:10.1039/c6ra03399g

    Article  CAS  Google Scholar 

  238. Lei W, Han Z, Si W, Hao Q, Zhang Y, Xia M, Wang F (2014) Sensitive and Selective Detection of Imidacloprid by Graphene-Oxide-Modified Glassy Carbon Electrode. ChemElectroChem 1(6):1063–1067. doi:10.1002/celc.201300244

    Article  CAS  Google Scholar 

  239. Wang L, Yang R, Chen J, Li J, Qu L, de BHP (2014) Sensitive voltammetric sensor based on isopropanol-Nafion-PSS-GR nanocomposite modified glassy carbon electrode for determination of clenbuterol in pork. Food Chem 164:113–118. doi:10.1016/j.foodchem.2014.04.052

  240. Shamsipur M, Tabrizi MA, Mahkam M, Aboudi J (2015) A High Sensitive TNT Sensor Based on Electrochemically Reduced Graphene Oxide-Poly(amidoamine) Modified Electrode. Electroanalysis 27:1466–1472. doi:10.1002/elan.201400634

    Article  CAS  Google Scholar 

  241. Zhou Y, Dong H, Liu L, Hao Y, Chang Z, Xu M (2015) Fabrication of electrochemical interface based on boronic acid-modified pyrroloquinoline quinine/reduced graphene oxide composites for voltammetric determination of glycated hemoglobin. Biosens Bioelectron 64:442–448. doi:10.1016/j.bios.2014.09.058

    Article  CAS  Google Scholar 

  242. Zhang Y, Bai X, Wang X, Shiu KK, Zhu Y, Jiang H (2014) Highly sensitive graphene-Pt nanocomposites amperometric biosensor and its application in living cell H2O2 detection. Anal Chem 86(19):9459–9465. doi:10.1021/ac5009699

    Article  CAS  Google Scholar 

  243. Ensafi AA, Jafari-Asl M, Rezaei B (2013) A novel enzyme-free amperometric sensor for hydrogen peroxide based on Nafion/exfoliated graphene oxide-Co3O4 nanocomposite. Talanta 103:322–329. doi:10.1016/j.talanta.2012.10.063

    Article  CAS  Google Scholar 

  244. Chen L, Wang X, Zhang X, Zhang H (2012) 3D porous and redox-active prussian blue-in-graphene aerogels for highly efficient electrochemical detection of H2O2. J Mater Chem 22(41):22090–22096. doi:10.1039/c2jm34541b

    Article  CAS  Google Scholar 

  245. Joshi AC, Markad GB, Haram SK (2015) Rudimentary simple method for the decoration of graphene oxide with silver nanoparticles: Their application for the amperometric detection of glucose in the human blood samples. Electrochim Acta 161:108–114. doi:10.1016/j.electacta.2015.02.077

    Article  CAS  Google Scholar 

  246. Zhu X, Jiao Q, Zhang C, Zuo X, Xiao X, Liang Y, Nan J (2013) Amperometric nonenzymatic determination of glucose based on a glassy carbon electrode modified with nickel(II) oxides and graphene. Microchim Acta 180(5–6):477–483. doi:10.1007/s00604-013-0955-1

    Article  CAS  Google Scholar 

  247. Zhou D-L, Feng J-J, Cai L-Y, Fang Q-X, Chen J-R, Wang A-J (2014) Facile synthesis of monodisperse porous Cu2O nanospheres on reduced graphene oxide for non-enzymatic amperometric glucose sensing. Electrochim Acta 115:103–108. doi:10.1016/j.electacta.2013.10.151

    Article  CAS  Google Scholar 

  248. Cao X, Gao J, Ye Y, Wang P, Ding S, Ye Y, Sun H (2016) Amperometric Determination of Sulfide by Glassy Carbon Electrode Modified with Hemin Functionalized Reduced Graphene Oxide. Electroanalysis 28(1):140–144. doi:10.1002/elan.201500508

    Article  CAS  Google Scholar 

  249. Zhang S, Li B-Q, Zheng J-B (2015) An electrochemical sensor for the sensitive determination of nitrites based on Pt–PANI–graphene nanocomposites. Anal Methods 7(19):8366–8372. doi:10.1039/c5ay01710f

    Article  CAS  Google Scholar 

  250. Devasenathipathy R, Mani V, Chen SM (2014) Highly selective amperometric sensor for the trace level detection of hydrazine at bismuth nanoparticles decorated graphene nanosheets modified electrode. Talanta 124:43–51. doi:10.1016/j.talanta.2014.02.031

    Article  CAS  Google Scholar 

  251. Adhikari B-R, Govindhan M, Chen A (2015) Sensitive Detection of Acetaminophen with Graphene-Based Electrochemical Sensor. Electrochim Acta 162:198–204. doi:10.1016/j.electacta.2014.10.028

    Article  CAS  Google Scholar 

  252. Cui L, Chen L, Xu M, Su H, Ai S (2012) Nonenzymatic amperometric organic peroxide sensor based on nano-cobalt phthalocyanine loaded functionalized graphene film. Anal Chim Acta 712:64–71. doi:10.1016/j.aca.2011.11.021

    Article  CAS  Google Scholar 

  253. Felix FS, Ferreira LMC, Vieira F, Trindade GM, Ferreira VSSA, Angnes L (2015) Amperometric determination of promethazine in tablets using an electrochemically reduced graphene oxide modified electrode. New J Chem 39(1):696–702. doi:10.1039/c4nj00887a

    Article  CAS  Google Scholar 

  254. Mir TA, Akhtar MH, Gurudatt NG, Kim JI, Choi CS, Shim YB (2015) An amperometric nanobiosensor for the selective detection of K+-induced dopamine released from living cells. Biosens Bioelectron 68:421–428. doi:10.1016/j.bios.2015.01.024

    Article  CAS  Google Scholar 

  255. Tabrizi MA, Zand Z (2014) A Facile One-Step Method for the Synthesis of Reduced Graphene Oxide Nanocomposites by NADH as Reducing Agent and Its Application in NADH Sensing. Electroanalysis 26(1):171–177. doi:10.1002/elan.201300370

    Article  CAS  Google Scholar 

  256. Jiang L, Gu S, Ding Y, Ye D, Zhang Z, Zhang F (2013) Amperometric sensor based on tricobalt tetroxide nanoparticles-graphene nanocomposite film modified glassy carbon electrode for determination of tyrosine. Colloids Surf, B 107:146–151. doi:10.1016/j.colsurfb.2013.01.077

    Article  CAS  Google Scholar 

  257. Ping J, Wang Y, Fan K, Tang W, Wu J, Ying Y (2013) High-performance flexible potentiometric sensing devices using free-standing graphene paper. J Mater Chem B 1(37):4781–4791. doi:10.1039/c3tb20664e

    Article  CAS  Google Scholar 

  258. Abraham AA, Rezayi M, Manan NSA, Narimani L, Rosli ANB, Alias Y (2015) A Novel Potentiometric Sensor Based on 1, 2-Bis (N′-benzoylthioureido) benzene and Reduced Graphene Oxide for Determination of Lead (II) Cation in Raw Milk. Electrochim Acta 165:221–231. doi:10.1016/j.electacta.2015.03.003

    Article  CAS  Google Scholar 

  259. Poursaberi T, Ganjali MR, Hassanisadi M (2012) A novel fluoride-selective electrode based on metalloporphyrin grafted-grapheneoxide. Talanta 101:128–134. doi:10.1016/j.talanta.2012.08.039

    Article  CAS  Google Scholar 

  260. Nooredeen NM, Abd El-Ghaffar MA, Darwish WM, Elshereafy E, Radwan AA, Abbas MN (2015) Graphene oxide with covalently attached zinc monoamino-phthalocyanine coated graphite electrode as a potentiometric platform for citrate sensing in pharmaceutical preparations. J Solid State Electrochem 19(7):2141–2154. doi:10.1007/s10008-015-2832-9

    Article  CAS  Google Scholar 

  261. Zhou Y, Dong H, Liu L, Liu J, Xu M (2014) A novel potentiometric sensor based on a poly(anilineboronic acid)/graphene modified electrode for probing sialic acid through boronic acid-diol recognition. Biosens Bioelectron 60:231–236. doi:10.1016/j.bios.2014.04.012

    Article  CAS  Google Scholar 

  262. Nikoleli G-P, Ibupoto Z, Nikolelis D, Likodimos V, Psaroudakis N, Tzamtzis N, Willander M, Hianik T (2013) Potentiometric cholesterol biosensing application of graphene electrode with stabilized polymeric lipid membrane. Cent Eur J Chem 11(9):1554–1561. doi:10.2478/s11532-013-0285-5

    CAS  Google Scholar 

  263. Rebelo TSCR, Santos C, Costa-Rodrigues J, Fernandes MH, Noronha JP, Sales MGF (2014) Novel Prostate Specific Antigen plastic antibody designed with charged binding sites for an improved protein binding and its application in a biosensor of potentiometric transduction. Electrochim Acta 132:142–150. doi:10.1016/j.electacta.2014.03.108

    Article  CAS  Google Scholar 

  264. Azadbakht A, Abbasi AR, Derikvand Z, Karimi Z (2015) Fabrication of an ultrasensitive impedimetric electrochemical sensor based on graphene nanosheet/polyethyleneimine/gold nanoparticle composite. J Electroanal Chem 757:277–287. doi:10.1016/j.jelechem.2015.08.034

    Article  CAS  Google Scholar 

  265. Xiong S, Cheng J, He L, Cai D, Zhang X, Wu Z (2015) Fabrication of β-cyclodextrin/graphene/1, 10-diaminodecane composite on glassy carbon electrode and impedimetric method for Di(2-ethyl hexyl) phthalate determination. J Electroanal Chem 743:18–24. doi:10.1016/j.jelechem.2015.02.013

    Article  CAS  Google Scholar 

  266. Gutes A, Lee BY, Carraro C, Mickelson W, Lee SW, Mabouduan R (2013) Impedimetric graphene-based biosensors for the detection of polybrominated diphenyl ethers. Nanoscale 5(13):6048–6052. doi:10.1039/c3nr01268a

    Article  CAS  Google Scholar 

  267. Kim KS, Um YM, Jang JR, Choe WS, Yoo PJ (2013) Highly sensitive reduced graphene oxide impedance sensor harnessing pi-stacking interaction mediated direct deposition of protein probes. ACS Appl Mater Interfaces 5(9):3591–3598. doi:10.1021/am303238r

    Article  CAS  Google Scholar 

  268. Qi P, Wan Y, Zhang D (2013) Impedimetric biosensor based on cell-mediated bioimprinted films for bacterial detection. Biosens Bioelectron 39(1):282–288. doi:10.1016/j.bios.2012.07.078

    Article  CAS  Google Scholar 

  269. Deng S, Ju H (2013) Electrogenerated chemiluminescence of nanomaterials for bioanalysis. Analyst 138(1):43–61. doi:10.1039/c2an36122a

    Article  CAS  Google Scholar 

  270. Liu Z, Qi W, Xu G (2015) Recent advances in electrochemiluminescence. Chem Soc Rev 44(10):3117–3142. doi:10.1039/c5cs00086f

    Article  CAS  Google Scholar 

  271. Su Y, Lv Y (2014) Graphene and graphene oxides: recent advances in chemiluminescence and electrochemiluminescence. RSC Adv 4(55):29324. doi:10.1039/c4ra03598d

    Article  CAS  Google Scholar 

  272. Gu W, Xu Y, Lou B, Lyu Z, Wang E (2014) One-step process for fabricating paper-based solid-state electrochemiluminescence sensor based on functionalized graphene. Electrochem Commun 38:57–60. doi:10.1016/j.elecom.2013.11.007

    Article  CAS  Google Scholar 

  273. Li Q, Zheng JY, Yan Y, Zhao YS, Yao J (2012) Electrogenerated chemiluminescence of metal-organic complex nanowires: reduced graphene oxide enhancement and biosensing application. Adv Mater 24(35):4745–4749. doi:10.1002/adma.201201931

    Article  CAS  Google Scholar 

  274. Hosseini M, Mirzanasiri N, Rezapour M, Sheikhha MH, Faridbod F, Norouzi P, Ganjali MR (2015) Sensitive determination of carbidopa through the electrochemiluminescence of luminol at graphene-modified electrodes. Luminescence 30(4):376–381. doi:10.1002/bio.2742

    Article  CAS  Google Scholar 

  275. Wang S, Wang S, Guo Z (2014) Electrochemiluminescence Sensor for Selective Preconcentration and Sensitive Detection of Napropamide Using Water-Soluble Sulfonated Graphene. Electroanalysis 26(4):849–855. doi:10.1002/elan.201300629

    Article  CAS  Google Scholar 

  276. Wang T, Zhang S, Mao C, Song J, Niu H, Jin B, Tian Y (2012) Enhanced electrochemiluminescence of CdSe quantum dots composited with graphene oxide and chitosan for sensitive sensor. Biosens Bioelectron 31(1):369–375. doi:10.1016/j.bios.2011.10.048

    Article  CAS  Google Scholar 

  277. Lv X, Pang X, Li Y, Yan T, Cao W, Du B, Wei Q (2015) Electrochemiluminescent immune-modified electrodes based on Ag2Se@CdSe nanoneedles loaded with polypyrrole intercalated graphene for detection of CA72-4. ACS Appl Mater Interfaces 7(1):867–872. doi:10.1021/am507398w

    Article  CAS  Google Scholar 

  278. Xin X, Yang Y, Liu J, Wang X, Zhou H, Yu B (2016) Electrocatalytic reduction of a coreactant using a hemin–graphene–Au nanoparticle ternary composite for sensitive electrochemiluminescence cytosensing. RSC Adv 6(31):26203–26209. doi:10.1039/c5ra26273a

    Article  CAS  Google Scholar 

  279. Zhang X, Guo Y, Liu M, Zhang S (2013) Photoelectrochemically active species and photoelectrochemical biosensors. RSC Adv 3(9):2846–2857. doi:10.1039/c2ra22238h

    Article  CAS  Google Scholar 

  280. Wang S, Zhu Y, Yang X, Li C (2014) Photoelectrochemical Detection of H2O2 Based on Flower-Like CuInS2-Graphene Hybrid. Electroanalysis 26(3):573–580. doi:10.1002/elan.201300515

    Article  CAS  Google Scholar 

  281. Cheng L, Liu J, Chen T, Xu M, Ji M, Zhang B, Zhang X, Zhang J (2016) Ternary cooperative Au–CdS–rGO hetero-nanostructures: synthesis with multi-interface control and their photoelectrochemical sensor applications. RSC Adv 6(37):30785–30790. doi:10.1039/c6ra02188c

    Article  CAS  Google Scholar 

  282. Zhang X, Xu F, Zhao B, Ji X, Yao Y, Wu D, Gao Z, Jiang K (2014) Synthesis of CdS quantum dots decorated graphene nanosheets and non-enzymatic photoelectrochemical detection of glucose. Electrochim Acta 133:615–622. doi:10.1016/j.electacta.2014.04.089

    Article  CAS  Google Scholar 

  283. Shen Q, Shi X, Fan M, Han L, Wang L, Fan Q (2015) Highly sensitive photoelectrochemical cysteine sensor based on reduced graphene oxide/CdS:Mn nanocomposites. J Electroanal Chem 759:61–66. doi:10.1016/j.jelechem.2015.10.013

    Article  CAS  Google Scholar 

  284. Wang K, Wu J, Liu Q, Jin Y, Yan J, Cai J (2012) Ultrasensitive photoelectrochemical sensing of nicotinamide adenine dinucleotide based on graphene-TiO2 nanohybrids under visible irradiation. Anal Chim Acta 745:131–136. doi:10.1016/j.aca.2012.07.042

    Article  CAS  Google Scholar 

  285. Qian J, Yang Z, Wang C, Wang K, Liu Q, Jiang D, Yan Y, Wang K (2015) One-pot synthesis of BiPO4 functionalized reduced graphene oxide with enhanced photoelectrochemical performance for selective and sensitive detection of chlorpyrifos. J Mater Chem A 3(26):13671–13678. doi:10.1039/c5ta02629f

    Article  CAS  Google Scholar 

  286. Huang W, Diallo AK, Dailey JL, Besar K, Katz HE (2015) Electrochemical processes and mechanistic aspects of field-effect sensors for biomolecules. J Mater Chem C 3(25):6445–6470. doi:10.1039/c5tc00755k

    Article  CAS  Google Scholar 

  287. Adzhri R, Md Arshad MK, Gopinath SC, Ruslinda AR, Fathil MF, Ayub RM, Nor MN, Voon CH (2016) High-performance integrated field-effect transistor-based sensors. Anal Chim Acta 917:1–18. doi:10.1016/j.aca.2016.02.042

    Article  CAS  Google Scholar 

  288. Stine R, Mulvaney SP, Robinson JT, Tamanaha CR, Sheehan PE (2013) Fabrication, optimization, and use of graphene field effect sensors. Anal Chem 85(2):509–521. doi:10.1021/ac303190w

    Article  CAS  Google Scholar 

  289. Maehashi K, Sofue Y, Okamoto S, Ohno Y, Inoue K, Matsumoto K (2013) Selective ion sensors based on ionophore-modified graphene field-effect transistors. Sensors Actuators B Chem 187:45–49. doi:10.1016/j.snb.2012.09.033

    Article  CAS  Google Scholar 

  290. Sohn IY, Kim DJ, Jung JH, Yoon OJ, Thanh TN, Quang TT, Lee NE (2013) pH sensing characteristics and biosensing application of solution-gated reduced graphene oxide field-effect transistors. Biosens Bioelectron 45:70–76. doi:10.1016/j.bios.2013.01.051

    Article  CAS  Google Scholar 

  291. Zhang M, Liao C, Yao Y, Liu Z, Gong F, Yan F (2014) High-Performance Dopamine Sensors Based on Whole-Graphene Solution-Gated Transistors. Adv Funct Mater 24(7):978–985. doi:10.1002/adfm.201302359

    Article  CAS  Google Scholar 

  292. Huang J, Chen H, Niu W, Fam DWH, Palaniappan A, Larisika M, Faulkner SH, Nowak C, Nimmo MA, Liedberg B, Tok AIY (2015) Highly manufacturable graphene oxide biosensor for sensitive Interleukin-6 detection. RSC Adv 5(49):39245–39251. doi:10.1039/c5ra05854f

    Article  CAS  Google Scholar 

  293. Chen H, Lim SK, Chen P, Huang J, Wang Y, Palaniappan A, Platt M, Liedberg B, Tok AI (2015) Reporter-encapsulated liposomes on graphene field effect transistors for signal enhanced detection of physiological enzymes. Phys Chem Chem Phys 17(5):3451–3456. doi:10.1039/c4cp04644g

    Article  CAS  Google Scholar 

  294. Rusling JF, Sotzing G, Papadimitrakopoulosa F (2009) Designing nanomaterial-enhanced electrochemical immunosensors for cancer biomarker proteins. Bioelectrochemistry 76(1–2):189–194. doi:10.1016/j.bioelechem.2009.03.011

    Article  CAS  Google Scholar 

  295. Chen H, Jiang C, Yu C, Zhang S, Liu B, Kong J (2009) Protein chips and nanomaterials for application in tumor marker immunoassays. Biosens Bioelectron 24(12):3399–3411. doi:10.1016/j.bios.2009.03.020

    Article  CAS  Google Scholar 

  296. Muzyka K (2014) Current trends in the development of the electrochemiluminescent immunosensors. Biosens Bioelectron 54:393–407. doi:10.1016/j.bios.2013.11.011

    Article  CAS  Google Scholar 

  297. Eissa S, Zourob M (2012) A graphene-based electrochemical competitive immunosensor for the sensitive detection of okadaic acid in shellfish. Nanoscale 4(23):7593–7599. doi:10.1039/c2nr32146g

    Article  CAS  Google Scholar 

  298. Srivastava S, Abraham S, Singh C, Ali MA, Srivastava A, Sumana G, Malhotra BD (2015) Protein conjugated carboxylated gold@reduced graphene oxide for aflatoxin B1detection. RSC Adv 5(7):5406–5414. doi:10.1039/c4ra12713g

    Article  CAS  Google Scholar 

  299. Yan F, Zhang Y, Zhang S, Zhao J, Liu S, He L, Feng X, Zhang H, Zhang Z (2015) Carboxyl-modified graphene for use in an immunoassay for the illegal feed additive clenbuterol using surface plasmon resonance and electrochemical impedance spectroscopy. Microchim Acta 182:855–862. doi:10.1007/s00604-014-1399-y

    Article  CAS  Google Scholar 

  300. Elshafey R, Siaj M, Tavares AC (2016) Au nanoparticle decorated graphene nanosheets for electrochemical immunosensing of p53 antibodies for cancer prognosis. Analyst. doi:10.1039/c6an00044d

    Google Scholar 

  301. Wang Y, Qu Y, Liu G, Hou X, Huang Y, Wu W, Wu K, Li C (2015) Electrochemical immunoassay for the prostate specific antigen using a reduced graphene oxide functionalized with a high molecular-weight silk peptide. Microchim Acta 182:2061–2067. doi:10.1007/s00604-015-1552-2

    Article  CAS  Google Scholar 

  302. Roushani M, Valipour A (2015) Voltammetric immunosensor for human chorionic gonadotropin using a glassy carbon electrode modified with silver nanoparticles and a nanocomposite composed of graphene, chitosan and ionic liquid, and using riboflavin as a redox probe. Microchim Acta 183(2):845–853. doi:10.1007/s00604-015-1731-1

    Article  CAS  Google Scholar 

  303. Li S, Yan Y, Zhong L, Liu P, Sang Y, Cheng W, Ding S (2015) Electrochemical sandwich immunoassay for the peptide hormone prolactin using an electrodemodifiedwith graphene, single walled carbon nanotubes and antibody-coated gold nanoparticles. Microchim Acta 182:1917–1924. doi:10.1007/s00604-015-1528-2

    Article  CAS  Google Scholar 

  304. Chen Q, Yu C, Gao R, Gao L, Li Q, Yuan G, He J (2016) A novel electrochemical immunosensor based on the rGO-TEPA-PTC-NH2 and AuPt modified C60 bimetallic nanoclusters for the detection of Vangl1, a potential biomarker for dysontogenesis. Biosens Bioelectron 79:364–370. doi:10.1016/j.bios.2015.12.063

    Article  CAS  Google Scholar 

  305. Gao Y-S, Zhu X-F, Yang T-T, Xu J-K, Lu L-M, Zhang K-X (2015) Sensitive electrochemical determination of α-fetoprotein using a glassy carbon electrode modified with in-situ grown gold nanoparticles, graphene oxide and MWCNTs acting as signal amplifiers. Microchim Acta 182:2027–2035. doi:10.1007/s00604-015-1537-1

    Article  CAS  Google Scholar 

  306. Singh S, Tuteja SK, Sillu D, Deep A, Suri CR (2016) Gold nanoparticles-reduced graphene oxide based electrochemical immunosensor for the cardiac biomarker myoglobin. Microchim Acta 183:1729–1738. doi:10.1007/s00604-016-1803-x

    Article  CAS  Google Scholar 

  307. Zhang X, Zhou D, Sheng S, Yang J, Chen X, Xie G, Xiang H (2016) Electrochemical immunoassay for the cancer marker LMP-1 (Epstein-Barr virus-derived latent membrane protein 1) using a glassy carbon electrode modified with Pd@Pt nanoparticles and a nanocomposite consisting of graphene sheets and MWCNTs. Microchim Acta 183:2055–2062. doi:10.1007/s00604-016-1848-x

    Article  CAS  Google Scholar 

  308. Chen X, Qin P, Li J, Yang Z, Wen Z, Jian Z, Zhao J, Hu X, Jiao X (2015) Impedance immunosensor for bovine interleukin-4 using an electrode modified with reduced graphene oxide and chitosan. Microchim Acta 182:360–376. doi:10.1007/s00604-014-1331-5

    Google Scholar 

  309. Yang J, Xiang Y, Song C, Liu L, Jing X, Xie G, Xiang H (2015) Quadruple signal amplification strategy based on hybridization chain reaction and an immunoelectrode modified with graphene sheets, a hemin/G-quadruplex DNAzyme concatamer, and alcohol dehydrogenase: ultrasensitive determination of influenza virus subtype H7N9. Microchim Acta 182:2377–2385. doi:10.1007/s00604-015-1583-8

    Article  CAS  Google Scholar 

  310. Jiang X, Chen K, Wang J, Shao K, Fu T, Shao F, Lu D, Liang J, Foda MF, Han H (2013) Solid-state voltammetry-based electrochemical immunosensor for Escherichia coli using graphene oxide-Ag nanoparticle composites as labels. Analyst 138(12):3388–3393. doi:10.1039/c3an00056g

    Article  CAS  Google Scholar 

  311. Fei J, Dou W, Zhao G (2016) Amperometric immunoassay for the detection of Salmonella pullorum using a screen - printed carbon electrode modified with gold nanoparticle-coated reduced graphene oxide and immunomagnetic beads. Microchim Acta 183:757–764. doi:10.1007/s00604-015-1721-3

    Article  CAS  Google Scholar 

  312. Llobet E (2013) Gas sensors using carbon nanomaterials: A review. Sensors Actuators B Chem 179:32–45. doi:10.1016/j.snb.2012.11.014

    Article  CAS  Google Scholar 

  313. Yuan W, Shi G (2013) Graphene-based gas sensors. J Mater Chem, A 1 (35):10078. doi:10.1039/c3ta11774j

  314. Meng F-L, Guo Z, Huang X-J (2015) Graphene-based hybrids for chemiresistive gas sensors. TrAC Trends Anal Chem 68:37–47. doi:10.1016/j.trac.2015.02.008

    Article  CAS  Google Scholar 

  315. Varghese SS, Lonkar S, Singh KK, Swaminathan S, Abdala A (2015) Recent advances in graphene based gas sensors. Sensors Actuators B Chem 218:160–183. doi:10.1016/j.snb.2015.04.062

    Article  CAS  Google Scholar 

  316. Toda K, Furue R, Hayami S (2015) Recent progress in applications of graphene oxide for gas sensing: A review. Anal Chim Acta 878:43–53. doi:10.1016/j.aca.2015.02.002

    Article  CAS  Google Scholar 

  317. Choi H, Choi JS, Kim JS, Choe JH, Chung KH, Shin JW, Kim JT, Youn DH, Kim KC, Lee JI, Choi SY, Kim P, Choi CG, Yu YJ (2014) Flexible and transparent gas molecule sensor integrated with sensing and heating graphene layers. Small 10(18):3685–3691. doi:10.1002/smll.201400434

    Article  CAS  Google Scholar 

  318. Lipatov A, Varezhnikov A, Wilson P, Sysoev V, Kolmakov A, Sinitskii A (2013) Highly selective gas sensor arrays based on thermally reduced graphene oxide. Nanoscale 5(12):5426–5434. doi:10.1039/c3nr00747b

    Article  CAS  Google Scholar 

  319. Yuan W, Liu A, Huang L, Li C, Shi G (2013) High-performance NO2 sensors based on chemically modified graphene. Adv Mater 25(5):766–771. doi:10.1002/adma.201203172

    Article  CAS  Google Scholar 

  320. Gupta Chatterjee S, Chatterjee S, Ray AK, Chakraborty AK (2015) Graphene–metal oxide nanohybrids for toxic gas sensor: A review. Sensors Actuators B Chem 221:1170–1181. doi:10.1016/j.snb.2015.07.070

    Article  CAS  Google Scholar 

  321. Peng Y, Ye J, Zheng L, Zou K (2016) The hydrogen sensing properties of Pt–Pd/reduced graphene oxide based sensor under different operating conditions. RSC Adv 6(30):24880–24888. doi:10.1039/c5ra26618a

    Article  CAS  Google Scholar 

  322. Iftekhar Uddin ASM, Phan D-T, Chung G-S (2015) Low temperature acetylene gas sensor based on Ag nanoparticles-loaded ZnO-reduced graphene oxide hybrid. Sensors Actuators B Chem 207:362–369. doi:10.1016/j.snb.2014.10.091

    Article  CAS  Google Scholar 

  323. Su P-G, Yang L-Y (2016) NH3 gas sensor based on Pd/SnO2/RGO ternary composite operated at room-temperature. Sensors Actuators B Chem 223:202–208. doi:10.1016/j.snb.2015.09.091

    Article  CAS  Google Scholar 

  324. Hasani A, Dehsari HS, Gavgani JN, Shalamzari EK, Salehi A, Taromi FA, Mahyari A (2015) Sensor for volatile organic compounds using an interdigitated gold electrode modified with a nanocomposite made from poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) and ultra-large graphene oxide. Microchim Acta 182:1551–1559. doi:10.1007/s00604-015-1487-7

  325. Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39(5):1747–1763. doi:10.1039/b714449k

    Article  CAS  Google Scholar 

  326. Vashist SK, Luong JHT (2015) Recent advances in electrochemical biosensing schemes using graphene and graphene-based nanocomposites. Carbon 84:519–550. doi:10.1016/j.carbon.2014.12.052

    Article  CAS  Google Scholar 

  327. Liu J, Han L, Wang T, Hong W, Liu Y, Wang E (2012) Enzyme immobilization and direct electrochemistry based on a new matrix of phospholipid-monolayer-functionalized graphene. Chem Asian J 7(12):2824–2829. doi:10.1002/asia.201200629

    Article  CAS  Google Scholar 

  328. Zhou Y, Cao J, Zhao J, Xie Y, Fei J, Cai Y (2016) Temperature-responsive amperometric H2O2 biosensor using a composite film consisting of poly(N-isopropylacrylamide) -b-poly(2-acrylamidoethyl benzoate), graphene oxide and hemoglobin. Microchim Acta 183:2501–2508. doi:10.1007/s00604-016-1893-5

    Article  CAS  Google Scholar 

  329. Li Z, Sheng L, Meng A, Xie C, Zhao K (2016) A glassy carbon electrode modified with a composite consisting of reduced graphene oxide, zinc oxide and silver nanoparticles in a chitosan matrix for studying the direct electron transfer of glucose oxidase and for enzymatic sensing of glucose. Microchim Acta 183:1625–1632. doi:10.1007/s00604-016-1791-x

    Article  CAS  Google Scholar 

  330. Zhou X-h, Huang X-r, Liu L-h, Bai X, Shi H-c (2013) Direct electron transfer reaction of laccase on a glassy carbon electrode modified with 1-aminopyrene functionalized reduced graphene oxide. RSC Adv 3(39):18036–18043. doi:10.1039/c3ra42312c

    Article  CAS  Google Scholar 

  331. Zheng Y, Liu Z, Zhan H, Li J, Zhang C (2015) Development of a sensitive acetylcholinesterase biosensor based on a functionalized graphene–polyvinyl alcohol nanocomposite for organophosphorous pesticide detection. Anal Methods 7(23):9977–9983. doi:10.1039/c5ay02666k

    Article  CAS  Google Scholar 

  332. Ju K-J, Feng J-X, Feng J-J, Zhang Q-L, Xu T-Q, Wei J, Wang A-J (2015) Biosensor for pesticide triazophos based on its inhibition of acetylcholinesterase and using a glassy carbon electrode modified with coral-like gold nanostructures supported on reduced graphene oxide. Microchim Acta 182:2427–2434. doi:10.1007/s00604-015-1584-7

    Article  CAS  Google Scholar 

  333. Dey RS, Raj CR (2010) Development of an Amperometric Cholesterol Biosensor Based on Graphene-Pt Nanoparticle Hybrid Material. J Phys Chem C 114(49):21427–21433. doi:10.1021/jp105895a

    Article  CAS  Google Scholar 

  334. Parlak O, Tiwari A, Turner AP, Tiwari A (2013) Template-directed hierarchical self-assembly of graphene based hybrid structure for electrochemical biosensing. Biosens Bioelectron 49:53–62. doi:10.1016/j.bios.2013.04.004

    Article  CAS  Google Scholar 

  335. Kim DM, Kim MY, Reddy SS, Cho J, Cho CH, Jung S, Shim YB (2013) Electron-transfer mediator for a NAD-glucose dehydrogenase-based glucose sensor. Anal Chem 85(23):11643–11649. doi:10.1021/ac403217t

    Article  CAS  Google Scholar 

  336. Heerema SJ, Dekker C (2016) Graphene nanodevices for DNA sequencing. Nat Nanotechnol 11(2):127–136. doi:10.1038/nnano.2015.307

    Article  CAS  Google Scholar 

  337. Chu Y, Cai B, Ma Y, Zhao M, Ye Z, Huang J (2016) Highly sensitive electrochemical detection of circulating tumor DNA based on thin-layer MoS2/graphene composites. RSC Adv 6(27):22673–22678. doi:10.1039/c5ra27625j

    Article  CAS  Google Scholar 

  338. Fang L-X, Cao J-T, Huang K-J (2015) A sensitive electrochemical biosensor for specific DNA sequence detection based on flower-like VS2, graphene and Au nanoparticles signal amplification. J Electroanal Chem 746:1–8. doi:10.1016/j.jelechem.2015.03.026

    Article  CAS  Google Scholar 

  339. Jayakumar K, Rajesh R, Dharuman V, Venkatasan R, Hahn JH, Pandian SK (2012) Gold nano particle decorated graphene core first generation PAMAM dendrimer for label free electrochemical DNA hybridization sensing. Biosens Bioelectron 31(1):406–412. doi:10.1016/j.bios.2011.11.001

    Article  CAS  Google Scholar 

  340. Liu F, Xiang G, Jiang D, Zhang L, Chen X, Liu L, Luo F, Li Y, Liu C, Pu X (2015) Ultrasensitive strategy based on PtPd nanodendrite/nano-flower-like@GO signal amplification for the detection of long non-coding RNA. Biosens Bioelectron 74:214–221. doi:10.1016/j.bios.2015.06.021

    Article  CAS  Google Scholar 

  341. Sanghavi BJ, Sitaula S, Griep MH, Karna SP, Ali MF, Swami NS (2013) Real-time electrochemical monitoring of adenosine triphosphate in the picomolar to micromolar range using graphene-modified electrodes. Anal Chem 85(17):8158–8165. doi:10.1021/ac4011205

    Article  CAS  Google Scholar 

  342. Zhan X, Hu G, Wagberg T, Zhan S, Xu H, Zhou P (2016) Electrochemical aptasensor for tetracycline using a screen-printed carbon electrode modified with an alginate film containing reduced graphene oxide and magnetite (Fe3O4) nanoparticles. Microchim Acta 183:723–729. doi:10.1007/s00604-015-1718-y

    Article  CAS  Google Scholar 

  343. Benvidi A, Tezerjani MD, Moshtaghiun SM, Mazloum-Ardakani M (2016) An aptasensor for tetracycline using a glassy carbon modified with nanosheets of graphene oxide. Microchim Acta 183:1797–1804. doi:10.1007/s00604-016-1810-y

    Article  CAS  Google Scholar 

  344. Shamsipur M, Farzin L, Tabrizi MA (2016) Ultrasensitive aptamer-based on-off assay for lysozyme using a glassy carbon electrode modified with gold nanoparticles and electrochemically reduced graphene oxide. Microchim Acta 183. doi:10.1007/s00604-016-1920-6

  345. Fang S, Dong X, Ji H, Liu S, Yan F, Peng D, He L, Wang M, Zhang Z (2016) Electrochemical aptasensor for lysozyme based on a gold electrode modified with a nanocomposite consisting of reduced graphene oxide, cuprous oxide, and plasma-polymerized propargylamine. Microchim Acta 183:633–642. doi:10.1007/s00604-015-1675-5

    Article  CAS  Google Scholar 

  346. Wang T, Liu J, Gu X, Li D, Wang J, Wang E (2015) Label-free electrochemical aptasensor constructed by layer-by-layer technology for sensitive and selective detection of cancer cells. Anal Chim Acta 882:32–37. doi:10.1016/j.aca.2015.05.008

    Article  CAS  Google Scholar 

  347. Jia F, Duan N, Wu S, Dai R, Wang Z, Li X (2016) Impedimetric Salmonella aptasensor using a glassy carbon electrode modified with an electrodeposited composite consisting of reduced graphene oxide and carbon nanotubes. Microchim Acta 183:337–344. doi:10.1007/s00604-015-1649-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Nature Science Foundation of China (Nos. 31070885) and Wuhan Education Foundation (2010005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengshui Hu.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Wang, Y. & Hu, S. Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchim Acta 184, 1–44 (2017). https://doi.org/10.1007/s00604-016-2007-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-2007-0

Keywords

Navigation